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SECTION I

INTRODUCTION

- Honeywell's Multics System is currently undergoing redesign that
will allow it to simultaneously process information of different
classifications, a mode of operation known as multi-level processing.
In order for a computer system to be certified for multi-level opera-
tion, it must be proven that classified information in the system can-
not be compromised. The key to development of a certifiable system is
the concept of a reference monitor, embodied in a security kernel [1].
The kernel is a protected portion of the operating system and hardware
that is small enough so that it can be mathematically verified to op-
erate correctly and to provide the required security controls.

A top level specification of a security kernel is an abstract de-
scription of the interfaces between the kernel and user software. The
specification is used as the basis for mathematical verification.

This report provides the top level specification of a security kernel
for a secure front-end processor (SFEP) for Multics. The top level
specification for the Multics security kernel is currently in prepara-
tion.

Although extensive knowledge of Multics is not required for an
understanding of this report, it is assumed that the reader is famil-
jar with the basic concepts of Multics and related terminology [2,3].

BACKGROUND

The first operational security kernel has been implemented on a
PDP-11/45 minicomputer [4] to demonstrate the feasibility of applying
the kernel concept in a real operating system. Although the operating
system utilizing the kernel is primitive, the kernel itself is general
enough to show that it is indeed possible to construct a reasonably
small kernel that could support a relatively complex operating system.

While the PDP-11/45 kernel was being developed, the Air Force,
MITRE, and Honeywell collaborated on the design for a set of "security
enhancements" that could be incorporated into Multics to simulate as
closely as possible the envisioned operation of a kernel based Multics
[5]. These security enhancements are collectively referred to as the
Access Isolation Mechanism, and have become part of the Multics stand-
ard product [3]. Though not formally specified or validated, the en-
hancements were carefully designed to provide the highest degree of
security possible within the existing Multics framework.
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The purpose of designing enhancements for this interim system was
to gain insight into the problems that might be encountered by users
who have to work with a multi-level system, and to fulfill an immedi-
ate need for a multi-level operational capability at the Air Force
Data Services Center. Multics with the Access Isolation Mechanism
will soon be authorized for multi-level processing at the AFDSC in a
limited environment that minimizes the threat of malicious attack by
restricting access fo the system to secret and top secret cleared in-
dividuals.

Multics is bhasically a remotely accessed system and has a front-
end processor that handles the communications interfaces, mostly to
terminals. Currently the Series 60 (Level 68) Multics processor uses
a DataNet 6600 as its front-end. Since the front-end processor is it-
self a computer, its operation must also be based on a security kernel
if it is to be involved in multi-level processing. Unfortunately, the
DataNet 6600 cannot support a kernel because the hardware lacks vari-
ous features seen essential to the efficient implementation of a ker-
nel [6]. 1Instead, the decision was made to provide the necessary
hardware support by designing a "security protection module" (SPM)
that could be logically added onto an existing minicomputer to provide
the necessary hardware features. The Honeywell Series 60 (Level 6)
minicomputer family [7] has been chosen as the hardware base to be en-
hanced by the addition of an SPM.

KERNEL DESIGN PROCESS

The construction of a security kernel begins with a mathematical
model that provides the axioms and properties of a system that imple-
ments a specific security policy. Such a model has been developed for
the Department of Defense security regulations [8] for a computer
system with a Multics-like structure.

Using the model as a guide, an abstract specification of the ker-
nel’s interfaces with non-kernel software and users is prepared. This
interface is the top level specification. From this top level, addi-
tional details of the kernel’s design, embodied in lower level speci-
fications, are prepared, and finally the computer programs are written
to implement the specification.

In conjunction with the kernel design and implementation, the
validation process provides the proof that the design and implementa-
tion are secure. The proof consists of several phases: proving cor-
respondence of the top level specification to the model, proving that
the kernel satisfies certain properties of a reference monitor (i.e.,
that it mediates all accesses and is isolated), and that the implemen-
tation of the kernel corresponds to the specification.
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In order to be able to validate any system, it must be as small
and simple as possible. For this reason a great deal of effort goes
into minimizing the size and complexity of the kernel specification.
It is hoped that the end result will be a verifiable kernel that con-
tains the minimal mechanism necessary that efficiently supports an op-
erating system and provides the required controls.



SECTION II

GENERAL CONCEPTS AND DEFINITIONS

As a prerequisite for understanding of the specification, the
reader must be familiar with certain underlying concepts of kernel de-
sign. These concepts have been discussed extensively in other docu-
ments [4,9] and will therefore only be briefly reviewed in this sec-
tion. More attention will be given to concepts specific to the SFEP
and to definitions of terms.

SECURITY POLICY

The security kernel within a system is that combination of hard-
ware and software that enforces the security policy. The definition
of a security policy involves a description of the controls and rules
that must be enforced when a subject accesses an object. The military
security policy is defined with respect to a person’s access to data,
where each person (subject) is assigned a clearance and each data item
(object) is assigned a classification. In addition, subjects and ob-
jects may be assigned to one or more categories or compartments that
further define or limit the available access. The concept of clear-
ance, classification and category has been generalized for use with
the security kernel. The term "access level" is used as a replacement
for clearance, classification, and other security attributes of people
and objects. The military policy, called the "simple security condi-
tion", states that an individual may not see data of an access level
greater than his own. Within the computer, the active agent for a
person is a process, and the process acquires the security attributes
of its user. The computer system must then make sure that this simple
security condition is satisfied whenever a process accesses an object.

In the real world, people are "trusted" not to violate the policy
with respect to data to which they have rightfully been given access.
For example, a secret cleared individual is trusted not to disclose
secret or confidential information to someone not properly cleared.

He is not trusted, however, to refrain from looking at or disclosing
top secret material.

Within the computer, however, the process that acts on behalf of
the individual is not trusted to prevent a compromise of data, even if
it has access to the data as indicated by its security level. This
lack of trust in software has led to the requirement for a protection
policy more restrictive than that enforced for people. The additional
restriction placed on software is that a process cannot "write" into

9



an object of an access level less than its own.l This restriction is
commonly known as the *-property [8], and when combined with the sim-
ple security condition is the policy that the kernel must enforce.

SECURITY AND INTEGRITY

The "access level" attribute that is assigned to processes and
data is more complex than that alluded to above. An access level is
actually made up of two identically structured components: a security
level and an integrity level. The security level is used to protect
against the unauthorized disclosure of information, as required by the
Department of Defense regulations. It directly embodies the familiar
classifications and categories assigned to individuals and to informa-
tion.

The integrity level is used to protect against unauthorized modi-
fication of information. The concept of integrity was introduced for
use in computer systems [10] because, using only security levels, the
problem of sabotage of classified information is not addressed. For
example, security levels allow an unclassified program to be used by a
top secret process. If this unclassified program is untrustworthy,
there is nothing to stop it from maliciously destroying or modifying
top secret information to which the process has access. By assigning
an integrity level to a process and to programs and data, a process of
high integrity will not be allowed to access data or use programs of a
lower integrity, thereby preventing sabotage by programs of lower in-
tegrity.

Both the integrity level and security level are made up of two
components: classification and category. The classification is a
single value, and the category is a set of values. Classifications
are linearly ordered and category sets are partially ordered. In com-
paring two access levels, A and B, one of several relationships can
hold:

A =B

A # B and A "dominates" B

A # B and B "dominates" A

none of the above: A is isolated from B

1Str'ictly speaking, there are not always simple "less than" or "great-
er than" relationships between access levels. These terms are used,
however, when the meaning is obvious. See the next subsection for a
discussion of the structuring of an access level.
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The rules for determining when the "dominates" condition is satisfied
are presented in the specification of the Dominates function in Figure
13. A process of access level A can only read an object of access
level B if A dominates B. A process can only write an object if B
dominates A. If A dominates B and B dominates A, then A must be equal
to B and thus the process may both read and write the object.

KERNEL CONCEPTS

The kernel, as discussed above, is a combination of hardware and
software. The kernel must be as small as possible, isolated, and tam-
perproof. In a computer such as the SFEP or Multics, the kernel soft-
ware is envisioned to run distributed in every user process. Isola-
tion is provided by putting the kernel in the innermost ring or rings
protected by hardware [11]. All kernel software and hardware must be
completely and formally specified. Software in a ring outside the
kernel invokes the kernel by calling specific entry points that in the
specification are known as "primitives". From the point of view of
uncertified software, these primitives are indivisible. The top level
specification, presented in this report, is a specification of the
functions provided by these primitives in terms of effects visible to
non-kernel software.

The kernel itself may be internally layered in order to simplify
verification. Layering of the kernel itself, and the functions of
each of the layers, are topics to be considered in the future. It is
sufficient to say at this point that the top level interfaces entirely
specify the operation of the kernel from the point of view of non-ker-
nel software.

Since the kernel only provides the most basic functions necessary
to build a secure system, it is envisioned that a supervisor of some
form will run in the rings immediately outside the kernel. This su-
pervisor must be itself protected from user software that runs in the
outermost rings, but such protection is only necessary to provide a
functional utility -- not security. As far as the kernel is con-
cerned, there is no difference between supervisor and user software.

It is likely that only the supervisor will directly call kernel
primitives. By monitoring all kernel calls, the supervisor is able to
perform its necessary functions and keep the system running. It is
hoped that the kernel provides sufficient generality to allow the ef-
ficient implementation of a wide range of operating systems. However,
discussion of possible supervisor or applications software design is
outside the scope of this report.
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SECURITY CONTROLS

The security policy enforced by the kernel consists of two basic
types of controls -- discretionary and non-discretionary. These two
types of controls are the only ones that the kernel provides. Other
controls, such as those enforced by the ring mechanism, are not pro-
vided by the kernel.?2

Non-discretionary Security

The simple security condition and the ¥*-property comprise the
non-discretionary security controls. These controls are termed non-
discretionary because non-kernel software cannot manipulate the attri-
butes of subjects or objects upon which these controls are based. For
example, a secret process can only create secret segments. Secret
segments, once created, must remain secret -- no process has the capa-
bility of changing the access level of a segment, either up or down.

Discretionary Security

Discretionary security is derived from the Department of Defense
need-to-know policy. In the real world, an individual does not have
the right to change the classification of a document, but he does have
the right to provide access to the document to other properly cleared
persons if they have a need-to-know. 1In the computer, need-to-know
controls are provided by use of an access control list (ACL) for each
object. The access control list specifies who can access the object,
subject of course to the non-discretionary controls discussed above.
A process that creates an object can set the ACL as it desires. The
kernel places no restrictions on how the ACL can be set, but the ACL
is saved within the kernel and is enforced by the kernel when another
process attempts to obtain access to the object.

There has been a certain amount of controversy over the useful-
ness of discretionary controls implemented by the kernel because, by
their very nature, they cannot be trusted. The fact that the controls
are discretionary means that any software running in a user’s process

2The use of rings to protect the kernel from user software is not an
issue at the top level interface -- the kernel simply does not provide
any primitives that allow the user to set the ring numbers of segments
to kernel ring numbers. There are functions provided by the kernel
that set ring numbers in segments for users, but these functions ap-
pear only in the implementation and not in the specification because
they have no "net effects". See the discussion of net effects begin-
ning on page 17 and particularly the example of an unspecified effect
near the middle of page 19.
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can maliciously or incorrectly change ACLs of objects he owns without
the user’s knowledge. In order to '"prove'" that ACLs correctly re-
flect the user’s wishes, it is necessary to verify all the code to
which the user has access, in addition to the kernel code. Since ver-
ification of non-kernel code is infeasible, what reason is there for
providing a part of the ACL controls in verified kernel software when
non-verified code can easily subvert it?

The answer to this question lies in the definition of the securi-
ty policy. The policy states that if need-to-know restrictions are
properly specified, they are enforced. The proof of ACL controls will
concentrate on correct maintenance of the ACL at the kernel interface
(assuming that the arguments passed to the kernel are correct), proper
enforcement of the ACL, and on correctness of the implementation as
specified. The utility of the ACL controls is that, if it can be
shown that the ACL setting primitives are correctly called, the ACL is
properly enforced.

MINIMIZATION OF THE TOP LEVEL

The top level specification of the kernel is strictly defined to
contain those interfaces that are visible to uncertified or non-kernel
software. The goal of the top level specification is to include
only those functions that are necessary to enforce the security poli-
cy, and to minimize the complexity and size of those functions. 1In
the process of designing the top level interfaces, however, it often
is necessary to include functions that may not be directly related to
the enforcement of security but are required to provide a desired fea-
ture or avoid redundancy. Also, the ability of the supervisor to op-
erate efficiently and reliably must often be considered.

As examples of functions not required for security, consider
those functions that return the status of objects (such as Get_acl
shown in Figure 14 and Get_attributes in Figure 17). These functions
are not necessary for security because the supervisor, who creates ob-
jects via kernel calls, can keep its own records of the objects. How-
ever, a system crash or supervisor bug can destroy such records, and
it should be possible for the supervisor to recover. (Of course, it
is assumed that the kernel has no bugs and can itself recover from a
hardware crash.) Also, since the kernel must save these attributes,
it would be unnecessarily redundant for the supervisor to also keep
such records. The status functions are provided to fulfill a utility
requirement and to aid efficiency.

It is not always completely clear whether a given function should
be provided by the kernel. If there is any doubt about inclusion of a
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function, the goal of minimizing the kernel dictates that that func-
tion be left out unless its impact on the specification is trivial.

In the Multics design, for example, the Multics quota mechanism is en-
forced by the kernel because the mechanism is part of Multics that
must remain compatible and because there is no way for the supervisor
to provide that same quota mechanism without help from the kernel. 1In
the SFEP design, compatibility is not an issue and, since the supervi-
sor could implement some form of quota mechanism if necessary, no quo-
ta mechanism is provided by the SFEP kernel.

THE INTERPRETER CONCEPT

The "interpreter concept" is employed as a means by which one can
visualize the operation of a kernel based machine. The top level ker-
nel specification completely defines an abstract machine and all the
available operations. The interpreter is an abstract program, outside
the kernel, that runs on this abstract machine. The interpreter it-
self can provide a series of interfaces that define a further outer
layer of abstract machine, upon which another abstract program can be
constructed, and this layering can be continued indefinitely outward
in a manner similar to the layering of abstract machines within the
kernel.

The Hardware Interpreter

In order to support an operating system or general user program-
ming outside the kernel, some layer of abstract machine outside the
kernel must present all the interfaces normally available to programs,
i.e., the complete set of hardware instructions and facilities must be
provided, in addition to the kernel’s software implemented functions.
Because this abstract machine is not in the kernel, its exact makeup
is not important. Thus it can, for simplicity, be assumed that the
interpreter running immediately outside the kernel is the abstract
program that, using only kernel functions, presents a complete hard-
ware and software interface at the next layer of abstract machine out
from the kernel.

This interpreter can be likened to a microprogrammed emulator
that provides for the execution of complex machine instructions using
a basic set of primitive mechanisms. A rough idea of what such an em-
ulator might look like is shown in the flowchart in Figure 1. The
figure is merely illustrative and very general in nature -- it is not
meant to depict the detailed instruction cycle of the Level 6 minicom-
puter. The interpreter has an internal data base that is used to hold
various flags and registers needed to emulate the instruction set.
This data base includes such things as the program counter (PC in the
flowchart), instruction word (INS), address register (ADDR), temporary

14
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data word (DATA), and some state flags. Machine instructions are
fetched from memory one at a time using the kernel’s Execute primi-
tive, decoded, and executed. The execution of a machine instruction
may include calls to the Read or Write kernel primitives, setting reg-
isters, and performing arithmetic operations on data. In addition,
the interpreter checks for and handles faults and interrupts at the
appropriate time, and properly manages the program counter.

The kernel itself is responsible for providing all primitives re-
quired by the interpreter to perform security-related functions.
Thus, for example, the Read, Fxecute and Write primitives, which in-
volve access to segments and thus checks of discretionary and non-dis-
cretionary security, must be provided by the kernel. Arithmetic oper-
ations, transfer operations, etc., can be totally handled by the in-
terpreter using its local data for temporary storage.3

The syntax, semantics, and structure of the actual code in the
abstract program comprising the interpreter is totally unrestricted as
far as security is concerned. Thus no one need ever be burdened with
the massive task of designing and implementing such an interpreter.
However, since the hardware implemented by the interpreter and the
kernel is fixed and already defined, it remains to be proved that all
security-related functions actually performed by the hardware are
specified as kernel primitives, or can be decomposed into a combina-
tion of kernel primitives that an interpreter could use. This "proof
of completeness" of the kernel specification could be obtained by pro-
viding an existence proof that the hardware, as specified by the manu-
facturer, can indeed be implemented in an interpreter using only ker-
nel primitives and non-security related operations. This existence
proof may entail considerable effort -- it remains to be determined to
what degree of detail the verification methodology requires specifica-
tion of the interpreter in order to obtain the existence proof. Hope-
fully the effort will be less than that of specifying and proving a
kernel that includes all of hardware.

Interpreter Extension to Software

In Figure 1 the interpreter is shown to "call" only those kernel
primitives that are in fact implemented in hardware. Upon further ex-

3Note, however, that, since all data repositories are state variables,
the kernel must provide for their storage via V-functions. Thus, in-
terpreter data, though it may be arbitrarily manipulated, must be in-
cluded as a V-function (with appropriate O-functions to set its val-
ue). Read_interpreter_data and Write_interpreter data are the ab-
stract kernel functions that manipulate the interpreter data (See Fig-
ure 19).
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amination it becomes evident that this abstract interpreter must also
call functions that will be implemented in kernel software. Consider
a software call to a kernel function. This call will appear, at the
machine instruction level, like a call instruction with an appropriate
argument list.4 Since the interpreter provides the "complete" machine
interface visible to non-kernel software, it is the interpreter that
must decode the call instructions and argument lists for all calls
that software makes to the kernel. Presumably at some point in the
decoding of the call instruction the interpreter must exit to the
proper kernel procedure, at which point it relinquishes control of the
machine to the kernel.

Note that, since the abstract interpreter is outside the kernel,
any argument validation that takes place as part of the decoding of
the call instruction must be considered to be done by the kernel.

Obviously, as far as the hardware is actually concerned, the only
difference between non-kernel software and kernel software is the fact
that some protection device, such as a ring number in a hardware reg-
ister, indicates a certain state. It is in reality the same hardware
that executes kernel code. In the abstract sense, however, we have no
choice but to assume that the kernel software somehow executes cor-
rectly, even though we don’t care about the details of the hardware
interpreter that "runs" non-kernel software.

NET EFFECTS

Because there is no well defined isolation mechanism that sepa-
rates the non-kernel portions of the hardware from the kernel por-
tions, we are at freedom to define the simplest set of primitives that
implement the security-related hardware operations, and to consider
all the rest of hardware to be in the non-kernel interpreter as dis-
cussed above.

Kernel software, on the other hand, will be isolated from non-
kernel software by hardware-implemented rings (where the innermost
ring or rings are occupied by the kernel). There is thus a well de-
fined boundary between kernel and non-kernel software, and it becomes
a simple matter to determine, after it is implemented, whether a given
piece of code is inside or outside the kernel. It would appear, then,
that if the specified top level kernel primitives were designed to be

bcall and return instructions are special hardware instructions that
provide for ring crossings within a process. The Level 6 SPM supports
a simplified version of the call and return mechanism as implemented
in Multies [11].
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minimal, there would be no problem constructing minimal software that
directly implements these primitives in the kernel rings.

Unfortunately, the implementation is never as "clean" as the
specification, and there is a general problem a verifier faces when it
becomes necessary to prove the correspondence of the implementation to
the specification. Although the specification itself may be complete,
the goal of minimizing the top level results in the omission of cer-
tain important effects from the specification that are required only
as implementation details. Such effects may even be visible at the
top level. For example, it is quite possible that for each function,
the kernel will always clear out one or more of the machine registers
(which are part of the interpreter data) upon returning to the caller.
An implementation detail such as this is left out because it would
only clutter up the specification. The verifier, however, must deal
with this and similar effects in some manner.

It may be a simple matter to prove that the zeroing of registers,
providing it is always done, is secure, but more complicated effects
may be more difficult to eliminate. The verifier is thus faced with a
kernel implementation that appears to do much more than it is supposed
to, according to the specification. 1In order to verify that the en-
larged implementation of the kernel still corresponds to the specifi-
cation, it is necessary to examine the implementation to show that any
"extra" things done by the kernel have no net effect not specified at
the top level. A net effect is an effect visible to the user that
cannot be duplicated outside the kernel using existing kernel primi-
tives.

The simple example of register zeroing can be duplicated outside
the kernel by appending to all kernel function calls a call to the V-
function that writes the interpreter data. In the search for net ef-
fects, one does not proceed on a function by function basis, since it
is possible for the implementation of a given function, when examined
separately, to have an unspecified effect. Rather, it is necessary to
consider the entire specification and its implementation as a whole in
order to determine whether there are any net effects.

The manner in which unspecified effects are checked during the
validation procedure is straightforward. For any unspecified effect
performed by kernel software, an example must be created that exactly
duplicates the effect in all cases, in terms of variables and data to
which the user has access, using only specified kernel functions. If
such an example can be found, the effect is not a net effect and can
be ignored. This existence proof is usually very simple, since the
vast majority of unspecified effects are entirely process-local invol-
ving data of the same access level as the process. Only one "example"
of the writing and reading of such data needs to be created to suffice
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for the existence proof of most instances of unspecified effects.

The purpose of this report is not to discuss validation tech-
niques. It may very well be that net effects, as discussed here, will
be treated in some entirely different manner. The purpose of discus-
sing net effects at this point is to provide guidelines and a justifi-
cation for not including in the specification certain features that,
at first glance, appear to be required kernel functions because they
will be performed by software running in the kernel ring.

Occasionally the specification contains what may seem to be re-
dundant effects in the sense of net effects discussed above. Such ef-
fects are specified because the function provided is too deeply tied
in with the operation of the kernel to be easily removable. The re-
moval of such a function would leave a specification that is so ab-
stract that proof of correspondence of the implementation might be ex-
tremely difficult. It is also possible that the inclusion of a "re-
dundant" function actually simplifies the specification by localizing
a series of exceptions or effects that might otherwise be dispersed
throughout many functions. The Initiate primitive, and the entire
concept of segment initiation, is an example of a redundant function
whose removal might seriously confuse the specification and hamper the
correspondence proof.

Example of an Unspecified Effect

An example of a facility provided by the kernel, but not speci-
fied, is the facility of storing ring numbers in segment descriptors
at the time a segment is initiated. Rings, though they provide pro-
tection for the kernel itself, need not be supported to satisfy any
security policy with respect to non-kernel data. There is a function-
al requirement that the supervisor be able to protect itself from user
code, and rings are used to provide this protection, but the require-
ment is imposed on the implementation and not on the specification.
There is no inherent reason that the kernel itself provide support for
rings at the top level.b5

Unfortunately, due to the hardware architecture, the only place
ring brackets can be stored is in segment descriptors, and segment de-
scriptors must be physically within the kernel domain because they are
the main protection element for data. Therefore, the kernel implemen-
tation must provide a function that inserts these ring brackets, at

5The fact that the same mechanism used to isolate the kernel is also
used to isolate the supervisor is irrelevant in the abstract sense.

Verification of the implementation guarantees that only kernel seg-

ments have kernel ring numbers.
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the discretion of the supervisor (or interpreter), into the segment
descriptor. Such a function is said to have no net effect, however,
and therefore need not be specified at the top level, because, from
the point of view of the abstract machine provided by the kernel, this
function does nothing that cannot be duplicated by the interpreter or
supervisor using existing kernel primitives. (The only effect of set-
ting a ring number in a segment descriptor is the possibility of sub-
sequently generating a fault when that segment is referenced in the
same process. This is tantamount to setting a flag for oneself and
later testing it -- an operation easily performed using process-local
interpreter data.) Specification of such a function would be entirely
redundant, contingent, of course, upon the ability to prove that ring
numbers in descriptors have no other security-related effects.

For the most part, implementation details that can be said to
have no net effects are those that only involve manipulation of proc-
ess-local data. It is possible, however, that a function can perform
an operation that is visible to other processes of the same security
level only and may therefore still have no net effect.

TRUSTED FUNCTIONS

Since the policy enforced by the kernel is only specified in
terms of access to data by untrusted users and software, the kernel is
not responsible for maintaining any controlled interface to trusted
users or trusted software. The top level specification of the kernel
only refers to the interfaces to untrusted software and untrusted us-
ers.

No system can properly perform, however, without a certain amount
of software that must be trusted to work correctly, even though that
software is not responsible for enforcing any security policy. For
example, a "downgrade" function may be provided that allows certain
privileged individuals to downgrade classified information. The prim-
itive functions that provide such interfaces to trusted individuals
are termed trusted functions.

Trusted functions are not strictly part of the top level kernel
interface because the top level interface as a whole enforces the pol-
icy regardless of how it is invoked. The verification of the security
kernel involves proving that the specification enforces the policy,
and that the implementation of the specification is correct. Trusted
function interfaces, on the other hand, will violate the policy if
they are invoked incorrectly.5 Under certain conditions it may be

bNote that if the security policy is changed to include the operation
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possible for a trusted function to make certain security or consisten-
cy checks on the arguments passed to it, thereby providing some
assertions upon which to base a proof of the specification, but in
general the only thing that can be proved about a trusted function in-
terface is that the implementation agrees with the specification.

Though they are not part of the top level interface to the ker-
nel, the trusted function interfaces must be specified because they
are interfaces to the outside world. In this report trusted functions
are discussed in Section VII, and the specification of the interfaces
is presented. It must be understood, however, that they must be in-
voked by trusted users (not by untrusted software).

SFEP KERNEL DESIGN OVERVIEW

The SFEP kernel is designed to be general purpose in that a wide
variety of operating systems can be supported. Conceivably the kernel
could be somewhat simpler if only the specific Multics SFEP applica-
tion were considered, but it is difficult to determine in advance ex-
actly which features ought or ought not be provided by the kernel for
a specific application. The task of validation of the kernel is great
enough so as to warrant inclusion of features of a general nature,
rather than specialized features that may later have to be modified
and recertified. In addition, a generalized kernel does not appear to
be that much more complex than any envisioned specialized kernel such
that the validation effort would be significantly affected.

The overall design of the SEEP kernel is very similar to that of
the Multics kernel. At the top level, the kernel supports a file sys-
tem structured as a hierarchy with a full set of primitives for manipu-
lating objects in the file system. The process structure is similar to
that of Multics, with block and wakeup primitives for interprocess
communication. The kernel also supports user I/0, a capability made
possible by Level 6 hardware-implemented access control features for
I/0 devices.

The top level specification is presented in three parts -- stor-
age control, process control, and input/output -- in the following
three sections. Section VII discusses the trusted functions. Appen-
dix II contains an index of individual function names and the figures
in which they can be found.

of these trusted functions, the trusted functions then become part of
the top level interface to be verified, and need no longer be consid-
ered trusted functions.
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SECTION III

SPECIFICATION LANGUAGE

The top level specification is a formal description of a finite
state automaton that implements the kernel interface of the SFEP.
This interface enforces the access control axioms developed in the
mathematical model.

BACKGROUND

The requirements of verification imply a need for a rigorous and
unambiguous specification. The specification provides the desirable
explicitness by adhering to formal specification standards and tech-
niques described below.

The form of the specification is derived from a technique devel-
oped by Parnas [12] and extended by Price [13]. Additional extensions

and modifications have been incorporated specifically for application
to the Multics and SFEP kernels.

SPECIFICATION FUNCTIONS

A "Parnas specification" provides a method of describing a finite
state automaton. The machine state is embodied in a set of "value"
functions (V-functions) that return a value when invoked. All possi-
ble changes to the machine state are described by a set of "operate"
functions (O-functions) that perform operations on V-functions based
on the values of supplied parameters. A third set of functions, OV-
functions, effect an operation and return a value. OV-functions are
used when it is necessary to make an operation indivisible from the
return of a value.

There are two classes of V-functions, derived and primitive.
Primitive V-functions are the state variables that can be assigned
values and can be invoked to obtain values. Derived V-functions can
be invoked to obtain values that are totally derived from the values
of other V-functions. As such, derived V-functions cannot be "set" to
a value but can only yield values. Derived V-functions are not re-
quired to describe the machine state, since they do not represent the
values of independent state variables, but they are used to return in-
formation derived from state variables that would not otherwise be
visible outside the kernel.
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The kernel, as a finite state automaton, is specified by a set of
0, V, and OV-functions that are visible to and may be arbitrarily in-
voked by non-kernel software, hardware, or users. These functions de-
fine the kernel interface and make up the top level specification that
will ultimately be validated with respect to the mathematical model.

In order to allow for the specification of machine state varia-
bles that must not be visible outside the kernel, or must not be arbi-
trarily set outside the kernel, but which are necessary to fully rep-
resent the kernel’s internal state, hidden V-functions are provided.
Hidden V-functions are similar to non-hidden V-functions but can only
be invoked from within the kernel (by other kernel functions). 1In
practice, because most state variables may not be arbitrarily set out-
side the kernel, primitive V-functions are almost always hidden. Even
if there is a simple one-to-one mapping between the values of a primi-
tive V-function and a corresponding derived V-function, it is usually
necessary to make the primitive V-function hidden and to define a non-
hidden O-function that sets its value in order to make appropriate
checks as to when the value may be set.

There are two types of "functions" that are really macros used to
simplify the specification. They are O-function macros and V-function
macros, syntactically similar to O-functions and derived V-functions,
respectively. These macros are understood to be invokable only by
other kernel functions, and can thus be considered hidden. O-function
and V-function macros generally specify operations or values that may
be common to several O-functions.

EXCEPTIONS

In the specification of most non-hidden functions there are a se-
ries of exceptions that are checked, in a specified order, before the
operation is invoked or the value is returned. These exceptions are
as important to the specification as the effects or values returned,
because they protect against unauthorized modification of data or in-
consistent machine states. In addition, because the caller is in-
formed of which exception occurred, exceptions are used to communicate
information back to the caller for which, if there were no exceptions,
additional V-functions might have to be provided to supply this infor-
mation.

Since exceptions return information, the top level proof of the
specification must consider whether improper information is returned
by the exception. In many cases, the order in which the exceptions
are checked and signalled is critical as to whether illegal informa-
tion is transmitted to the caller. Also, in some cases the ability to
distinguish between one of two logically different exceptions may pro-
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vide a basis for obtaining illegal information. 1In such cases it is
necessary to combine the two exceptions into one such that there is no
way to tell which one occurred.

Exceptions may only appear in non-hidden O-functions and V-func-
tions. Hidden functions cannot have exceptions, since they must be
invoked "correctly" by the kernel. Therefore, hidden V-functions must
be defined for all possible values of the input parameters that the
kernel might pass as arguments. Of course, function macros cannot
have exceptions either, since they are merely used as a form of short-
hand notation.

SPECIFICATION SYNTAX

Appendix I describes the complete syntax of the specification.
Within this document, the specification is presented, not as a whole,
but broken up into pieces and placed into figures for readability.
Since this breaking up results in partial or incomplete components of
the specification appearing in various places, the syntax rules may
not appear to be precisely followed in the figures. The syntax de-
scribed in the Appendix is, however, a syntax that could be used for
the validation procedure when all levels of the specification are fi-
nalized.

As a supplement to the specification syntax, some highlights of
the specification language and rules are discussed below, along with
some discussion of the semantics of the specification.

The specification is composed of a set of modules, each of which
contains the five sections: module name, type, define, parameter, and
constant, followed by individual function specifications. The entire
SFEP specification is considered to be one module.

Module Sections

The five sections of the module contain information that is glob-
al in nature and applies to all function specifications. A descrip-
tion of each of the five sections follows:

name: This section simply contains the name of the module.

type: The type section supplies global type definitions that
declare the types of all parameters and V-function val-
ues. Strong typing is provided, thereby simplifying
the specification by eliminating the need for explicit
bounds checking in the functions. The syntax of the
type specifications is taken from Pascal [14]. There
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define:

parameter:

constant:

are three primitive types, not explicitly defined in
the specification, as follows:

boolean: scalar ("true", "false");
character: scalar ("A*, "a®, MB" Wpn, .., NIM, wgn).
integer: scalar (-235, S a1 R0 [ SR 235-1);

More complex types are built up from these primitive
types and other types using the following type con-
structors:

scalar: one of an ordered set of values.

vector: a fixed length list of components of a specific
type. A component of a vector is obtained via a
selector having a specified range or type. A ref-
erence to an element of a vector is written as the
vector name followed by the selector value in
square brackets, e.g., "level[i]".

structure: a fixed length set of components, each hav-
ing a name and type.

set: a variable length set of components all of the
same type.

The define section provides global definitions for cer-
tain identifiers. These definitions are simple direct
substitution macros that allow for shorthand notation
for a specific string of text. Defines can be removed
from the specification with no effect by substituting
each occurrence of the identifier in the specification
with the appropriate text.

All formal parameters and quantified variables used in
functions are declared in the parameter section. Each
parameter is given a type definition, thus providing
the strong typing of function parameters. Quantified
variables, usually used as indices in local "lets" (see
below), have a range as indicated by their type defini-
tion.

The constant section defines named constants and their
types whose specific values are of no concern in the
specification. Constants have a value that must be in-
variant in the life of the system.
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Function Sections

Each function specification is broken up into several sections,
most of which are optional. These sections are defined as follows:

name:

let:

exception:

effect:

The function name appears on the first line of the
function specification, followed by a parenthesized
list of parameters, and the type of its value if it is
a V-function or OV-function.

The let section contains local macro definitions that
apply only to the function. The syntax and semantics
are identical to that of the define section of the mod-
ule described above. When substituting macro strings,
local "lets" are to be expanded first, before scanning
for any "defines".

The exception section contains a list of boolean ex-
pressions that are evaluated in order and cause a re-
turn to the caller if any evaluation yields the value
"true". An indication of the first expression yielding
"true" is also returned. Exceptions may only appear in
non-hidden functions.

This section appears in 0 and OV-functions. It con-
tains a list of boolean expressions describing the
state transitions that take place when the function is
called. The order of evaluation of the expressions is
not important -- the final state must be the same re-
gardless of the order of evaluation of the expressions.
Any V-function referenced in an effect represents the
value associated with that V-function after completion
of all the effects. If a V-function is referenced as a
value in an effect, and is also assigned a new value by
the same function, all references to the previous value
of the V-function are preceeded by a single quote (°).
Because effect expressions are simply assertions, the
two expressions:

3
and X

X3

3;

are equivalent, i.e., the statement that "x is equal to
3" is "true" at completion of the function. 1In this
example, the only way to make the statement true is to
assign the value 3 to the variable (or V-function) x.
For more complex expressions, it may not always be ob-
vious which V-functions are "set" in order to make the
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statement "true". By convention, in order to avoid am-
biguity, expressions in effects are, if possible, writ-
ten as:

<identifier> = <expression)>

where it is assumed that the <identifier> is assigned
the value of the <expression>. In some cases, however,
as in the specification of Block in Figure 21, the ex-
pression cannot be written as an assignment -- its
meaning, in such a case, is obvious.

derivation: The derivation, which appears only in derived V-func-
tions, V-function macros and OV-functions, contains one
or more expressions of the form
<identifier> = <expression>;
where <identifier> is either the name of the V-function
or, if the V-function value is a structure, the struc-

ture component name.

"Undefined" Values

Normally, a primitive V-function has a value of a specific type,
as last set by some O-function. 1In addition, any V-function, or com-
ponent of a structure in a V-function, may have the value "undefined",
regardless of its type. The "undefined" value is implicitly assigned
to any V-function whose value has not been set, and may also be expli-
citly assigned and tested for. If a structure is set to "undefined",
each of the components is also set to "undefined". If a component of
such a structure is subsequently set to some value, the remaining com-
ponents of the structure remain "undefined", but the structure itself

will no longer be equal to "undefined". Ry convention, it is not per-
missible to reference an "undefined" value, except as a test for equal
or not equal to "undefined". Note, however, that in an expression
such as:

it is permissible for both a and b to be "undefined", as long as

¢ = 7. That is, if the value of the expression can be determined
without evaluating any of the undefined quantities, the expression is
permissible. In the above example, if ¢ # 7, the value of the expres-
sion is not deterministic and expression is semantically in error.
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Expressions

The syntax of expressions is not precisely defined so that their
expressive power is not limited. The assumption is that well known
arithmetic and mathematical symbols will be used so that the meaning
of an expression is apparent. If any "strange" symbol is used, a
comment should appear in the specification stating its meaning. For
the SFEP, a certain limited set of operators and constructs has been
chosen. The description of each operator below includes the function
of the operator, acceptable types of the operands, and type of the re-
sult of the operation. The notation uses a meta-language described in
the introduction to Appendix I.

Prefix operators:

- arithmetic negation -- integer operand and result
logical complement -- boolean operand and result

>

Infix operators:

+ -/ ® arithmetic plus, minus, divide, multiply -- integer op-
erands and results

& | logical AND, OR -- boolean operands and results

> KK comparison operators -- scalar operands; boolean result

= # equal; not equal -- operands may be of any like types;
boolean results

6 element of set -- operator on left is a scalar, right
operand is a set of same type; boolean result

» such that -- see complex constructs below for descrip-

tionh,
concatenation -- boolean vector operands; boolean vec-
tor result.

Complex constructs:

if <boolean expression> then <expression>+
[else <expression>+] end

This is a conditional evaluation of the appropriate
<expression>s depending on the value of the <boolean
expression>. If used to return a value, the value of
the appropriate expression is returned.

(I<parameter>+) (<boolean expression>)
This construct yields the boolean value "true" or
"false", depending on whether there exist values of the
<{parameter>s such that the <boolean expression)> is
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"true". The range of values of the <parameter>s is im-
plicit in the type of the <parameter>, except that
those values of the <parameter> that would make the
<boolean expression> non-deterministic (due to improper
referencing of "undefined" values as discussed on page
27) are excluded. For example,

(3iuid) (Process(iuid).uid = uid1)

is evaluated by examining the value of
Process(iuid).uid for all possible values of the param-
eter iuid. 1In doing so, it is likely that a reference
will be made to "undefined" values, which is illegal.
The expression could be rewritten as

(3iuid) (Process(iuid) # "undefined" &
Process(uiid).uid = uid1)

which is more precise. However, in order to simplify
the specification, the semantics of this construct have
been defined so that the explicit check of "undefined"
is unnecessary.

(¥<parameter>+) (<expression>+)

This construct yields the boolean value "true" if the
{expression>s are "true" for all values of the
<{parameter>s. If used in an effect, this construct re-
sults in evaluation of the <expressiond>s for all values
of the <parameter>s.

{<parameter>|<boolean expression>}
This construct yields a set consisting of all values of
the <parameter> such that the <boolean expression> is

"true".

<parameter> » <boolean expression> or
(<parameter>+) » <boolean expression>

This construct yields any single value of each of the
<{parameter>s such that the <boolean expression) is
true. If more than one <parameter> is specified, this
construct must be used in an assignment as follows:

(<parameter>+) = (<parameter>+) » <boolean expression>
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which causes assignment of each <parameter> on the left
side to the corresponding <parameter> on the right
side, respectively. In the example

uid = iuid » Process(iuid) # "undefined"

the parameter uid is set to any value of iuid such that
Process(iuid) is not "undefined". 1In the construct

(proc,device) = (iuid,idevice) » <expression>

the parameters proc and device are set to a value of
iuid and idevice respectively, such that the
{expression> is true.

Miscellaneous operators:
min {<set>} or min (<expression>+)
This yields the minimum of a set of scalar values.
max {<set>} or max (<expression>+)
This yields the maximum of a set of scalar values.
bit (<expression>)

This yields a vector of boolean types (string of bits)
whose length and value uniquely identifies the value of
the <expression>, which may be of any type. The actual
mapping between values of various types and bit strings
is of no concern to the specification.

SCOPE OF THE SPECIFICATION

The top level specification presents the kernel interface as it
appears to a given process. This interface includes all process-local
state information, the file system, and certain information about the
existence of other processes. Since a process operates at a given ac-
cess level, the process-local kernel interface can be validated with
respect to the model in the sense that no information of a higher ac-
cess level is returned to the process. In reality, though, the kernel
is distributed among all processes, with each process executing as if
it was the only one on the processor. In order for the system to be
secure it is necessary to hide from a process the scheduling of other
processes on a processor. The fact that there may be more than one
processor in a system is also not visible at the top level. Thus, in
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order to provide such an appearance at the kernel interface, it is
necessary to eliminate the notion of process switching at the top lev-
el. There is a hidden V-function in the specification called Cur_proc
that provides the identifier of the process "currently" in execution,
and its value never explicitly changes in the specification. It must
ultimately be proved that the manner in which Cur_proc changes via
some scheduling algorithm (either inside or outside the kernel) cannot
be used to transmit information.

In one place in the specification, the Block primitive, a process
explicitly gives itself up to the processor. However, Block is speci-
fied to simply "wait" for a specific event and return when the event
occurs. As far as the process is concerned, no virtual time (dr.ene
processor time spent in the user’s process) has elapsed durineg the
wait.

Because the kernel specification presents a per-process virtual
environment, it is necessary to provide a mechanism for specifying op-
erations that take place asynchronously. This is not a problem with
Multics because all V-functions visible to the current process are
changed by O-functions executed synchronously in some process. 1In the
SFEP, there are asynchronous direct memory access (DMA) I/O devices
that are outside the kernel and effect operations on V-functions visi-
ble to some process. These asynchronous devices may operate on behalf
of a process other than the one currently on the processor. Thus, it
is necessary to specify their operation using "asynchronous O-func-
tions", which are understood to be invokable at any time by any device
on behalf of any process. The kernel must determine which process is
using the device in order to access the correct data bases, but
Cur_proc must not be changed. In order to include asynchronous
O-functions in the proof of the specification it will be necessary to
make additional assertions about the manner in which they are called
(e.g., that the device does not forge its physical identification).
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SECTION IV

STORAGE CONTROL

Storage control in the SFEP is very much like that of Multics.

The file system is a hierarchy as pictured in Figure 2. Each object
or entry in the file system is either a directory, segment or device.
Directories, indicated by rectangles, are directly accessible only to
the kernel and are used to store identities and attributes of entries
beneath them. Note that the attributes of a directory are contained
in the parent directory. Segments are unstructured files directly ac-
cessible to the user, and devices are I/0 devices, also directly ac-
cessible to the user. Though devices are objects in the file system,
the Input/Output subsystem will be discussed separately in Section VI.

ROOT

DIRECTORY DIRECTORY @ DIRECTORY

Comee) | Coma)
(o) o) o) o)

Figure 2. SFEP File Hierarchy

Every object (segment, directory or device) in the hierarchy has
an access level that is equal to or greater than that of its parent
directory. An object whose access level is greater than that of its
parent is called an "upgraded" object. The access level of the root
directory must always be the lowest possible (referred to as
system_low).

As stated above, the attributes of an object are stored in the
parent directory, and are thus classified at the access level of the
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parent. For upgraded objects, this means that the attributes are at a
lower access level than that of the object and thus, because of the

¥ _property, a process that can modify the object cannot modify the at-
tributes. Similarly, a process at the access level of the attributes
can modify the attributes but cannot examine the object itself. Up-
graded objects can only be deleted by a process whose access level is
equal to that of the parent.

VIRTUAL MEMORY LAYOUT

The structure of the virtual memory supported by the SFEP hard-
ware 1s not actually relevant to the top level specification of the
kernel. However, it is presented here because it is undocumented
elsewhere and because the hardware structure does guide the kernel de-
sign -- even at the top level.

Virtual memory in the SFEP supports both memory and I/0 devices
as objects. The SFEP hardware performs the address translation and
access checks necessary to access an object directly. Directories are
software supported objects that cannot be accessed directly by non-
kernel software, but they are nonetheless part of the virtual memory.
Direct access to directories is allowed only in the kernel ring, and
all requests for modifying or reading directories must be made via
calls to the kernel.

Figure 3 shows how a virtual memory address, presented to the
processor by a machine instruction, is translated into the physical
address of the word to be referenced. The address translation mecha-
nism is almost identical to that of Multics. For a complete descrip-
tion of the Multics mechanism, see [15]. A brief summary of memory
address translation will be given here. Refer to Section VI for a
discussion of device address translation.

At the top left of Figure 3, the descriptor base register (DBR),
loaded by the kernel, is shown to point to the base of a descriptor
tree for the current process. There are up to three levels of de-
scriptors, corresponding to descriptor segment page descriptors, seg-
ment descriptors, page descriptors. The segment page descriptor
points to the physical page in memory. At each level in the transla-
tion cycle, the previous descriptor is used to address the next de-
scriptor table, and the appropriate few bits of the virtual address
are used to index into this table to find the next level descriptor.
The final few bits of the virtual address are an index into the page.
The exact number of bits in each of the four fields of the virtual ad-
dress is unimportant for the purposes of this discussion.
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Access control information for each segment is stored in the seg-
ment descriptor, and applies to all pages in that segment. The access
control information consists of the following:

rings: Three ring numbers specify the domains in which access to
the object (segment or device) are allowed. The usual mean-
ings of the three ring numbers for access to segments are:

write bracket: Q.ito“ri
read bracket: 0 to r2
execute bracket: r1 to r2
call bracket: Pl to r3

For devices, the rings have the following meaning:

write bracket: 0 'to i
read bracket: 0 to r2
control bracket: 0 to r3

The read and write brackets refer to the reading and writing
of data on the device, as opposed to transmission of control
information (e.g., status or positioning requests). The
"read only" mode of access (from rings ri1+1 to r2) is a fea-
ture useful to software for write-protecting of the data me-
dium. However, because control operations must always be
"written" to a device, even if there is no accompanying
writing of the data, all devices must be, for security pur-
poses, considered to be read-write objects.

modes: There are three mode bits associated with segments: r, e,
and w. The modes are read, execute and write, respectively,
and specify the type of access allowed provided the ring
bracket restrictions are satisfied.

In a kernel based system, the above hardware controls are used to pro-
tect the kernel from the supervisor, and also are available for the
supervisor and the user for further layers of protection. The kernel,
most likely running in ring zero, will allow the supervisor no access
to any of its segments (i.e., the kernel’s segments will have ring
brackets of 0,0,0), except that entries into the kernel to invoke ker-
nel primitives will be in gate segments whose ring brackets are 0,0,1.
Thus the supervisor, running in ring 1, would be able to invoke the
kernel, but the user, running in a higher ring, would not. Of course,
the kernel and/or supervisor may occupy more than one ring, depending
on the degree of layering desired. Also, there is no security-related
reason for restricting kernel access to the supervisor. It is, how-
ever, unlikely that the supervisor could keep the system from crashing
if it allowed unrestricted access to kernel calls. The SFEP hardware
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is specified to support a minimum of three rings -- one each for the
kernel, supervisor, and user or applications programs. Additional

rings may be provided, however, for either kernel or non-kernel use.
At the time of this writing it appears that there will be four rings.

In an actual implementation the third level (page) descriptors
will probably be shared by all processes using the page. In this way
a page fault (page not in memory or page doesn’t exist) can be sig-
nalled for all processes simply by marking the one page descriptor.
The first two level descriptors, however, cannot be shared because
they contain access control information that applies only to one pro-
cess. Multies currently employs such a descriptor structure [16].

The descriptor tables themselves cannot be accessed by non-kernel
software and their existence is in fact invisible at the top level.
For this reason, the top level specification only deals with the file
system and the visible kernel interfaces that support the virtual mem-
ory.

COMMON DEFINITIONS AND FUNCTIONS

In support of storage control and process control there are sev-
eral data bases maintained by the kernel as hidden V-functions. Be-
fore discussing these data bases, it is appropriate at this point to
define some of the data types and parameters used in the storage con-
trol specification. Following the type and parameter specifications
are descriptions of the storage and process control hidden
V-functions.

Type definitions

The definitions of the data types are shown in Figure 4. Only
shown are those types that are more or less global in their use
throughout the specification. Other types used in specifie O-func-
tions and V-functions will be presented as necessary.

Parameters and Global Definitions

Figure 5 lists all the parameters and quantified variables used
in the specification, and Figure 6, some global definitions that apply
to many of the function specifications. The parameters in Figure 5
are defined in terms of their type designations and need no further
explanation. The meanings of the global definitions are somewhat more
complex and are discussed below.

In most of the definitions shown in Figure 6 the symbol "Cur" is
used. Cur is defined in each function in which it is used as a sub-
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seg_type = integer (0 to max_seg no); /® segment number */
offset_type = structure /* offset into segment ¥/

(page: page_type,

word_offset: word_offset_type);
page_type = integer (0 to max_pages); /* page number in a segment ¥/
word_offset_type = integer (0 to max_word_offset); /* no. words in page */
word_type = vector (integer (0 to word_length)) of boolean; /* machine word ¥/
uid_type = vector (integer (0 to uid_length)) of boolean; /* unique id */
pointer_type = structure /* virtual address pointer */

(seg: seg_type,
of fset: offset_type);

classification_type = scalar ("unclassified", "confidential",
"secret", "top secret");
category_type = set (scalar ("nato", "nuclear", "china", ...));

level type = structure
(classification: classification_type,
category: category_type);
access_level _type = structure
(security_level: level_type,
integrity level: level_type);
user_id_type = vector (integer (0 to user_id_length)) of character;

type_type = scalar ("directory", "segment", "device"); /* object types ¥/

entry_type = integer (0 to max_entries); /* entry number of a branch ¥/

Figure 4. Storage and Process Control Data Types
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parameter

uid, uid1, uid2: uid_type;
dir: seg_type;

seg: seg_type;

entry: entry_type;

acl: acl_type;

access_level, all, al2: access_level_type;

page: page_type;

mode: mode_type;

acl_mode: acl_mode_type;
offset: offset_type;

priority: priority_ type;

proc: uid_type;

message: message_type;
destination_uid: uid_type;
source_uid: uid_type;

pointer: pointer_type;
entry_point: pointer_type;
word, compare_word: word_type;
initial_kst: set {seg type};
pathname: pathname_type;
device_data: device_data_type;

physical_device: physical device_type;

user_id: user_id_type;
SFEP: integer;

/% quantified variables ¥/

ireg: reg_type;
ientry: entry_type;
idevice: device_type;
iacle: acle_type;
iuid: uid_type;

juid: uid_type;

i: integer;

iseg: seg_type;
ioffset: offset_type;
ipage: page_type;

Figure

5. Parameters
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define
dir_uid

Cur.kst(dir).uid;

dir_dir = Cur.kst(dir).dir;

dir_entry =

Cur.kst(dir).entry;

seg_uid = Cur.kst(seg).uid;
seg_dir = Cur.kst(seg).dir;

seg_entry =

Cur.kst(seg).entry;

/®
/®
/%
/®
/*®
/®

uid of directory %/

segno of parent of dir #*/
entry no. of dir %/

uid of segment ¥/

segno of parent of seg */
entry no. of seg */

Branch = Directory (dir_uid, entry); /* branch for [dir,entry] */
Directory (Cur.kst(dir_dir).uid, dir_entry);

Dir_branch =

Seg_branch =
device dir =
device_entry

VA

branch for dir #/

Directory (Cur.kst(seg_dir).uid, seg entry);

Cur.kdt (device).dir;

VA

segno of parent of device ¥/

= Cur.kdt (device).entry; /* entry no. of device #/

/*

branch for seg */

Device_branch = Directory (Cur.kdt(device_dir), device_entry);

/®

branch for device %/

Figure 6. Global Definitions
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stitute for the reference to the V-function Process. For example, Cur
may be defined as Process(uid), the value of Process for a given value
of uid. 1In that case the value of dir_uid, the first definition in
the figure, is Process(uid).kst(dir).uid, or the uid of the directory
whose segment number is dir in the process uid. The definitions
dir_dir and dir_entry are similarly the segment number of the parent
and entry number of the specified directory, respectively. The three
definitions seg uid, seg dir, and seg_entry are identical to the above
three, except the argument is seg instead of dir.

Given the segment number of a directory ("dir") and the number of
an entry ("entry") the value of Branch is the contents of the branch
of the specified entry. Dir_branch and Seg_branch are respectively
the branch for a directory and segment, given the segment number. The
definitions device_dir, device_entry, and Device_branch have meanings
similar to those for segments and directories.

Constants

The goal in the specification is to include as few literal con-
stants as possible, since such constants may change as the design pro-
gresses and literal constants provide no information useful to the
proof. Named constants are thus used wherever possible; the con-
stants used in the specification are shown in Figure 7.

Process Hidden V-Function

Process is the main data base for each process that contains all
process-dependent data. It is shown in Figure 8, along with the per-
tinent structures. It is indexed by unique-id of the process, and its
components are as follows:

kst This is the known segment table for each process, similar in
function to the Multics KST [16]. It contains an entry for
every initiated segment or directory. The segment number
(called "seg" in the specification) of the object is used as
an index into the kst. 1In a given process, there may not be
more than one kst entry for any object. The following com-
ponents are included in the kst:

type: has the value "segment", "directory", or "device".

dir: is the segment number of the parent directory.

entry: is the entry number of the object in its parent
directory.
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constant

max_seg_no: integer;
max_pages: integer;
max_word_offset: integer;
uid_length: integer;
user_id_length: integer;
max_entries: integer;
max_kst_size: integer;
max_acl_size: integer;
word_length: integer;

max_message_length: integer;

root_seg: seg_type;
root_uid: uid_type;

root_parent_uid: uid_type;

max_device_no: integer;

/®
VA
/®
VA
/®
/®
VA
/®
/®
VA
/*
VA
/®
/®

max_pathname_length: integer; /*
interpreter_data_length: integer; /* size of interpreter data */
/* quit_flag index in interpreter data ¥/

quit_flag: integer;

maximum segment number ¥/

maximum number of pages in segment %/
maximum word offset in a page */

maximum value of a uid #/

number of characters in user_id #*/
number of entries in a directory %/

maximum entries in kst #/
maximum number of entries
length of machine word in
length of data of message
segment number of root */
uid of root */

uid of parent of root ¥/
maximum device number #*/

in an acl ¥/
bits ¥/
*®/

maximum length of pathname */

Figure 7. Constants
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/* PROCESS - the process data structure */

Hidden_V_function Process(uid): process_type;

process_type = structure /% process data base ¥/
(kst: kst_type,
user_id: user_id_type,
uid: uid_type,
kdt: kdt_type,
priority: priority_type,
semaphore: integer,
messages: vector(uid_type) of message_type,
interpreter_data: interpreter_data_type,
access_level: access_level_type);

kst_type = vector (seg_type) of structure
(type: type_type,
dir: seg_type,
entry: entry_type,
uid: uid_type,
wired_pages: vector (integer (0 to max_pages)) of boolean);

interpreter_data_type = vector (0 to inerpreter_data_length) of boolean;

Figure 8. Process V-Function
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uid: is the unique-id of the object.

wired_pages: is an array of bits marking the pages of the
segment that are currently "wired" by the current
process. See the discussion of Wire and Unwire on
page 78.

Each kst entry corresponds in some sense to a segment de-
scriptor, and the entire kst corresponds to the descriptor
segment.

user_id: This is the user-id associated with process.

s § S The known device table is a structure in function similar to
the kst. An initiated device has one entry in the kdt in-
dexed by virtual device number. More detail on the struc-
ture of the kdt will be presented in Section VI.

priority: is a number, set by the user, specifying the execution pri-
ority of the process. The kernel places no restrictions on
the value that may be set.

semaphore: is a semaphore indicating the number of interprocess commu-
nication messages currently stored in messages, below. Its
value is incremented when a message is inserted and decre-
mented when a message is removed.

messages: are the messages, indexed by unique-id of the message. The
messages consist of arbitrary bit strings.

access_level: is the access level of the process.

interpreter_data: is unstructured data used by the interpreter for
this process.

The value returned by Process is "undefined" for processes that
do not exist. When a process is created, certain minimal information
is inserted by Create_proc (see page 65) in order to allow the process
to build its own kst, kdt, ete.

Directory Hidden V-Function

As stated previously, each object in the file system has a branch
that contains the attributes of the object. A directory consists of a
list of branches, one for each object in the directory. The V-func-
tion Directory, whose structure is shown in Figure 9, contains the
contents of the branch for an object. Directory is indexed by unique-
id of the directory and entry number of the branch. The contents of a
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/* DIRECTORY - contents of a directory branch */

Hidden_V_function Directory (uid, entry): branch_type;

branch_type = structure /* branch in a directory */
(uid: uid_type,
type: type_type,
access_level: access_level_type,
acl: acl_type,
device_data: device_data_type);

acl_type = structure /* acl of a branch #*/
(size: acle_type,
list: vector (acle_type) of structure
(user_id: user_id_type,
acl_mode: acl_mode_type));

mode_type = set /* access modes that may be requested */
(scalar ("read", "write", "execute",
"status", "modify"));

Figure 9. Directory V-Function
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branch, shown in the structure branch_type, are as follows:
uid: is the unique-id of the object.

type: is either "directory”, "segment", or "device".
access_level: is the access level of the object.

acl: is the access control list (ACL) of the branch. The ACL of
a branch is a vector of components containing a user-id and
a set of modes. The modes that may be specified in a branch
are any combination or none of "read", "write", and "exe-
cute". In order to determine whether a given type of access
to an object is allowed, the modes in the ACL, the ring
brackets, and the access level of the object must be exam-
ined.

device_data: If the object is a device, this information contains ad-
ditional device attributes to be discussed in more detail in
Section VI.

The kernel supports only those attributes of objects that are de-
scribed above. Other attributes must be maintained by software.

Miscellaneous Hidden V-Functions and Macros

These last few V-functions are shown in Figure 10. Cur_proc sim-
ply holds the unique-id of the process currently running. Data, in-
dexed by a segment’s unique-id and offset within the segment, contains
the words of data for a segment. Ancestor is a V-function that is set
when an object is created. Given two unique-ids, Ancestor returns
"true" if the first unique-id is that of an object which is a hierar-
chical ancestor of the second unique-id.

Unique_id is a V-function macro used throughout that returns a
unique-id each time it is referenced. The unique-id is defined as an
integer with some maximum value that will never be reached. In addi-
tion, each call to Unique_id must yield an integer that is greater
than the previous value of Unique_id, but not otherwise dependent on
it. The independence of consecutive values of Unique_1id is imposed as
a requirement in order to prevent modulating its value for use in
transmitting information. The requirement that Unique_id be constant-
ly increasing allows the value of an object ‘s unique-id to be conveni-
ently used to determine the object ‘s relative age (see the discussion
of Wakeup on page 67). 1In an implementation, the most obvious choice
for the value of Unique_id would be the real-time clock value as indi-
cated in the specification.
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/* CUR_PROC - unique-id for current process %/

Hidden _V_function Cur_proc: uid_type;

/* DATA - contents of data segments #*/

Hidden_V_function Data (uid, offset): word_type;

/®* ANCESTOR - "true" if uid1 is an ancestor of uid2 */

Hidden_V_function Ancestor (uid1, uid2): boolean;

/* UNIQUE_ID - returns a unique number constantly increasing */
V_function_macro Unique_id: uid_type;
derivation

"current time in microseconds since 0000 GMT 1 January 1901"
end;

Figure 10. Miscellaneous Hidden V-functions
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INITIATION AND TERMINATION

An entry (directory, segment or device) in a directory is identi-
fied by an entry number within the directory. Before an entry can be
accessed in any way, directly by machine instructions or indirectly
with kernel calls, it must be "initiated". The act of initiation of a
directory or segment results in the assignment of a segment number to
the entry. Initiation of a device yields a device number. The device
number and segment number are virtual addresses chosen by uncertified
software and saved by the kernel. After initiation, most references
to the object may be made by segment or device number. For initiated
segments and devices, these references are made by uncertified soft-
ware using hardware machine instructions, and address translation and
access is controlled by hardware. References to initiated directories
are made interpretively using kernel calls. Initiation of segments
and directories will be discussed below. Device initiation will be
discussed in detail in Section VI.

In order to initiate an object, the parent directory must first
be initiated. The Initiate O-function shown in Figure 11 requires as
input parameters the segment number of the parent directory, the entry
number of the object, and the segment number to be assigned to the ob-
ject. Initiation is allowed if the security checks are satisfied and
if there is not already an object initiated with that segment number.

Note that only the non-discretionary security checks are made at
initiate time. The non-discretionary checks can be made because the
information on which these checks are based (i.e., the access levels
of the object and process) will not change while the object is initi-
ated.” Discretionary security checks, however, involve data (the ac-
cess control lists) that can be changed at the top level after the ob-
ject is initiated. Thus, discretionary checks must be made at each
access to the object -- not just at initiate time. A check of discre-
tionary security by Initiate would be needless.

Terminate, shown in Figure 12, simply sets the specified kst en-
try undefined. The important considerations in Terminate are the ex-
ceptions. The second exception checks that a directory cannot be ter-
minated if entries in that directory are still initiated. This excep-
tion guarantees that all initiated objects have an initiated parent,
thereby assuring that the branches for all initiated objects are ac-

7Upgrad1ng of an object is accomplished simply by a process at the up-
graded access level copying the object. Downgrading must be done ex-
ternal to the system, e.g., by writing a tape at one access level and
then reading it at a lower access level. Trusted functions can also
be given the ability to downgrade.
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/* INITIATE - initiates a segment or directory */
0_function Initiate (dir, entry, seg);
let Cur = Process(Cur_proc);

exception
Cur.kst(dir) = "undefined";
Cur.kst(seg) # "undefined";
Cur.kst(dir).type # "directory";
Branch = "undefined";
"Dominates (Cur.access_level, Branch.access_level);
Branch.type = "device";

effect
Cur.kst(seg).dir = dir;
Cur.kst(seg).entry = entry;
Cur.kst(seg).uid = Branch.uid;
Cur.kst(seg).type = Branch.type;
Cur.kst(seg).wired_pages = "false";
end;

Figure 11. Initiate O-function
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/* TERMINATE - terminates a segment or directory #/
0_function Terminate (seg);
let Cur = Process(Cur_proc);

exception
Cur.kst(seg) = "undefined";
Cur.kst(seg).type = "directory" &
((3iseg)(Cur.kst(iseg).dir = seg) |
(didevice)(Cur.kdt (idevice).dir = seg));
Cur.kst(seg).type = "segment" &
(dipage) (Cur.kst(seg).wired_pages(ipage) = "true");

effect

Cur.kst(seg) = "undefined";
end;

Figure 12. Terminate O-Function
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cessible. The third exception checks that a segment to be terminated
does not have any pages that are currently wired. Wiring of pages
will be discussed under Input/Output in Section VI.

ACCESS CONTROL

In Figure 13 four V-function macros are shown that are used by
other top level functions to make access checks relating to discre-
tionary or non-discretionary security. These macros are typically
referenced on every access that requires the check.

Inas ("in address space") is called on every access to a segment
or directory. Input parameters are the unique-id of the process on
behalf of which the access is requested, the segment number, the ac-
cess mode desired ("read", "write", "execute", "status", or "modify").
The result is either "true" or "false". Inas uses the access level
and the access control list of the object. A check is also made to
see if the object is still initiated, and if the desired access mode
is appropriate for the entry type (e.g., "status" can only be re-
quested for a directory).

Access_permission is a macro that scans the ACL of an initiated
segment or directory, and returns "true" or "false" if the user_id of
the current process is on the list with the desired access mode. Note
that the first occurrence of an entry that matches the user_id is used
to find the mode. The kernel makes no check of what is put on the ACL
(See Set_acl on page 53) and therefore it is possible for more than
one entry to specify the same user_id.

Dominates is used throughout the specification to compare two ac-
cess levels. The value returned by Dominates is "true" if the first
access level dominates the second. This V-function macro is the only
place in the specification that cares about the structure of the ac-
cess level and how two access levels are compared. Thus, it would be
a simple matter to change the access level structure (e.g., to remove
integrity).

In Figure 14 are shown two primitives for setting and reading ac-
cess control lists. Setting an ACL of an object requires modify per-
mission to the parent directory, and reading the ACL requires status
permission. Since the object itself is not referenced by these primi-
tives the object need not be initiated or accessible. It must, how=-
ever, exist. No check at all is made for validity of the contents of
the ACL -- that is entirely the responsibility of the user or supervi-
sor.
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/* INAS - determines if process has access to object */

V_function_macro Inas (proc, seg, mode): boolean;

let Cur = Process(proc);
may_read = Access_permission (proc, seg, "read");
may_write = Seg_branch.access_level = Cur.access_level &
Access_permission (proc, seg, "write");
may_execute = Access_permission (proc, seg, "execute");
derivation
Inas = (Cur.kst(seg) # "undefined") &
(caseof mode
"read"! (Seg_branch.type = "segment") & may_read;
"write"! (Seg_branch.type = "segment") & may_write;
"execute"! (Seg_branch.type = "segment") & may_execute;
"status"! (Seg_branch.type = "directory") & may_read;
"modify"! (Seg_branch.type = "directory") & may_write;)
end;

/* ACCESS_PERMISSION - "true" if process has requested access on ACL */

V_function_macro Access_permission (proc, seg, acl_mode): boolean;

let Cur = Process(proc);
acle = min {iacle | iacle < Seg branch.acl.size &
Seg_branch.acl.list(iacle).user_id = Cur.user_id};
derivation
Access_permission = (3iacle)(iacle < Seg_branch.acl.size &
Seg _branch.acl(iacle).user_id = Cur.user_id &
acl_mode € Seg_branch.acl(acle).mode);
end;

Figure 13. Access Checking V-Function Macros
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/* DOMINATES - returns "true" if first access level dominates second %/

V_function_macro Dominates (al1, al2): boolean;

let sl1 = alil.security_level;
sl2 = al2.security_level;
il1 = all.integrity_level;
i12 = al2.integrity level;
derivation

Dominates = ((sl1.category = sl2.category &
sll.classification > sl2.classification) |
(sl2.category 6 sli.category &
sl1.classification = sl2.classification)) &
((il1.category = il2.category &
il1.classification < il2.classification) |
(il1.category € il2.category &
il1.classification = il2.classification));
end;

Figure 13. Access Checking V-Function Macros (concluded)
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/* GET_ACL - obtains the acl of an object */
V_function Get_acl (dir, entry): acl_type;

let Cur = Process(Cur_proc);

exception
“Inas (Cur_proc, dir, "status");
Branch = "undefined";

derivation

Get_acl = Branch.acl;
end;
/* SET_ACL - sets the acl of an object */
O_function Set_acl (dir, entry, acl);
let Cur = Process(Cur_proc);
exception
"Inas (Cur_proc, dir, "modify");
Branch = "undefined";
effect

Branch.acl = acl;
end;

Figure 14. ACL Primitives
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CREATION AND DELETION

Creation of objects in the hierarchy is allowed for segments and
directories, and deletion is allowed for all objects. Devices cannot
be created by the user or supervisor because devices correspond to
physical objects that exist externally and whose attributes are exter-
nally determined. The structure of the Input/Output subsystem and de-
vice objects will be discussed in detail in Section VI. Primitives
for creating devices are discussed in Section VII as trusted func-
tions.

Create is shown in Figure 15 and Delete is shown in Figure
16. Both creation and deletion require modify access to the parent
directory, thus the access level of the directory must be equal to
that of the process. The arguments to Create and Delete include the
segment number of the directory and the entry number of the branch.
For Create, the caller chooses the entry number for the object to be
created and the access level of the object to be created.

An object may be created having any access level greater than or
equal to the current access level of the process. The Create primi-
tive provides the only means by which an object of a greater access
level can be created. Once such an upgraded segment or directory is
created, it cannot be initiated for access by the current process.
The branch of the upgraded object, however, can be accessed.

In addition to initializing the branch, Create sets the value of
the V-function Ancestor to indicate that the parent directory is an
ancestor of the newly created entry. Ancestor is also set to indicate
that all ancestors of the parent directory are now ancestors of the
new entry.

Though no attributes, other than the access level, are specified
when using Create, the kernel must initialize attributes in the branch
so that they will be defined in case of subsequent initiation of the
object. Since creation of an object does not necessarily imply that
it will be subsequently initiated by the same process, the ACL is set
to null. Thus, if the object is to be used after creation, its ACL
must first be set for access by the current process. Also, the data
for the contents of segments is zeroed.

Delete allows unrestricted deletion of any object (segment, di-
rectory, or device) as long as the process has "modify" permission to
the parent directory. Note that although the user is not allowed to
create a device, there is no security violation if the user can delete
the device. Deletion of a segment or device is accomplished simply by
calling the O-function macro Delete object, which deletes the branch
for the object (see discussion of Delete_object below). It is not
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/* CREATE - creates a directory or segment %*/
0_function Create (dir, entry, type, access_level);
let Cur = Process(Cur_proc);

exception
type = "device";
“Inas (Cur_proc, dir, "modify");
“Dominates (access_level, Dir_ branch.access_level);
Branch # "undefined";

effect
Branch.uid = “Unique_id;
Branch.type = type;
Branch.access_level = access_level;
Branch.acl.size = 0;
if type = "segment" then
(¥ioffset)(Data(Branch.uid,ioffset)=0);
end;
Ancestor(dir_uid, Branch.uid) = "true";
(¥iuid) (if Ancestor(iuid, dir_uid)
then Ancestor(iuid, Branch.uid) = "true";
end);
end;

Figure 15. Creating an Object
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/* DELETE - deletes a segment, directory, or device */
O_function Delete (dir, entry);

let Cur = Process(Cur.proc);

exception
“Inas (Cur proc, dir, "modify");
Branch = "undefined";

effect

if ‘Branch.type = "directory"
then (¥iuid)(if Ancestor(’Branch.uid, iuid) = "true"
then effects_of Delete object (iuid);
end);
end;
effects of Delete_object ( Branch.uid);
end;

/% DELETE_OBJECT - deletes the branch of an object #/
O_function _macro Delete object (uid);

effect
(¥iuid,ientry)
(if “Directory(iuid,ientry).uid = uid
then if “Directory(iuid,ientry).type = "device"
then (¥juid,idevice)
(if “Process(juid).kdt(idevice).uid = uid
then Process(juid).kdt(idevice) = "undefined";
end);
else (¥juid,iseg)
(if “Process(juid).kst(iseg).uid = uid
then Process(juid).kst(iseg) = "undefined";
end);
end;
Directory(iuid,ientry) = "undefined";
end);
end;

Figure 16. Deleting Objects

56



necessary to explicitly delete the Data for the segment since, once
the uid of the segment in the branch is deleted, that data can no
longer be referenced.

The deletion of a directory is more complex because it involves
the possible deletion of many objects inferior to that directory. The
Multics kernel does not allow deletion of non-empty directories due to
the complexity involved and the fact that maintaining quota informa-
tion is impossible when upgraded directories can be deleted by a pro-
cess of a lower access level. For the SFEP kernel, deletion of an up-
graded directory, and all its inferiors, is merely a "write up", which
is permissible. Delete uses Ancestor to find all descendants of a di-
rectory to be deleted, and Delete_object is called to delete each of
the descendants.

Note that it would be considerably simpler to not allow for dele-
tion of non-empty directories, as in Multics. However, if deletion of
an upgraded directory is to be allowed, the user cannot be told (via
an exception) whether that upgraded directory is empty. Thus in order
to allow for deletion of upgraded directories, a facility must be pro-
vided to delete the entire subtree.

There is an alternative approach that allows for deletion of up-
graded subtrees without requiring the kernel to scan for descendants.
This approach requires the user to create upgraded processes of the
proper levels, and passing them the unique-ids of the upgraded direc-
tories whose contents are to be deleted. The kernel need only then
provide a function that deletes a single object, given a unique-id.
The problem is that, although the Delete primitive is simplified, in-
consistencies in the hierarchy possible in case of user error or mal-
function can result in objects that have no parent directory, and thus
cannot be referenced. These problems have implications in other
places in the specification where it is assumed that all initiated ob-
jects in the kst have an existing parent. The additional check re-
quired to handle these "lost objects", combined with the requirement
for a facility that periodically purges such objects, was seen to be.
no less complicated than the full implementation of a Delete_object
primitive.

Delete_object actually deletes the branch of an object, thereby
making its contents (the value of Directory or Data) inaccessible.
Whenever an object is deleted, the kernel must also remove all kst and
kdt entries for all processes that may have initiated the object.

This makes it impossible to access the object by segment or device
number.
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MANIPULATION OF ATTRIBUTES

Two V-functions are provided that return attributes of objects,
Get_attributes and Get_entries shown in Figure 17. For reasons dis-
cussed previously, these primitives are not required for security but
are required to provide a utility. There are no additional primitives
for setting attributes other than the ACL primitives in Figure 14, be-
cause the remaining attributes cannot be changed after the object is
created.

Get_attributes returns a structure containing all of the kernel
maintained information stored in the branch, except for the unique-id,
which is hidden, and the ACL, which is provided by Get_acl in Figure
14. The object may be of any type. In addition to providing utility,
Get_attributes is useful to observe file system changes made by the
SS0.

Get_entries, which returns a set of entry numbers in a directory
that are in use, is in the same class as Get_attributes in that the
supervisor could theoretically maintain this information itself. Ab-
stractly, though, Get_entries is not even required for utility, since
it would be possible for the supervisor to infer the set of entry num-
bers by using Get_attributes with all possible entry numbers and not-
ing which ones returned exceptions. This function is provided, how-
ever, to allow the supervisor to determine the structure of the hier-
archy in a "clean" and efficient manner.

HARDWARE PRIMITIVES

The "interpreter concept" discussed in Section II provides the
rationale for putting certain hardware-implemented functions in the
top level specification, and for leaving others out. The four basic
hardware primitives are shown in Figure 18. All four functions take a
pointer as an argument and are used to access a location in memory.
Read and Execute are V-functions that return the contents of the loca-
tion referenced, and Write is an O-function that writes a word of data
into a segment. Test_and_set is an OV-function that both reads and
writes a word conditionally, and is used to provide an indivisible
read-alter-rewrite operation necessary for implementing locks.

Although the interpreter is capable of reading an instruction us-
ing the Read primitive, the discretionary access policy requires that
a primitive that checks for "execute" access be provided. Thus, it is
assumed that the interpreter will use Execute for instruction fetches,
and Read for data fetches.
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/% GET_ATTRIBUTES - obtains type and access level of an object ¥/
V_function Get_attributes (dir, entry): structure

(type: type_type,

access_level: access_level_type);

let Cur = Process(Cur_proc);

exception
“Inas (Cur_proc, dir, "status");
Branch = "undefined";

derivation

Get_attributes.type = Branch.type;

Get_attributes.access_level = Branch.access_level;
end;
/* GET_ENTRIES - returns a set of all valid entries in a directory */
V_function Get_entries (dir): {entry_type};

let Cur = Process(Cur_proc);

exception
“Inas (Cur_proc, dir, "status");

derivation

Get_entries = {ientry | Directory(dir_uid, ientry) # "undefined"};
end;

Figure 17. Reading Attributes
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/* READ - reads a word from a segment into a register %/
V_function Read (pointer): word_type;
let Cur = Process(Cur_proc);

exception
"Inas (Cur_proc, pointer.seg, "read");

derivation
Read = Data (Cur.kst(pointer.seg).uid, pointer.offset);
end;
/% WRITE - writes a word of data in a segment */
O0_function Write (pointer, word);

let Cur = Process(Cur_proc);

exception
"Inas (Cur_proc, pointer.seg, "write");

effect
Data (Cur.kst(pointer.seg).uid, pointer.offset) = word;
end;
/* EXECUTE - read a word from a segment using execute permission ¥/
V_function Execute (pointer): word_type;

let Cur = Process(Cur_proc);

exception
“Inas (Cur_proc, pointer.seg, "execute");

effect

Execute = Data (Cur.kst(pointer.seg).uid, pointer.offset);
end;

Figure 18. Hardware Primitives
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/% TEST_AND _SET - reads and writes a word conditionally #*/
OV_function Test_and_set (pointer, compare_word, word): word_type;

let Cur = Process (Cur_proc);
seg_word = Data (Cur.kst(pointer.seg).uid, pointer.offset);

exception
“(Inas (Cur_proc, pointer.seg, "write") &
Inas (Cur_proc, pointer.seg, "read"));

effect
if “seg _word = compare_word then seg word = word; end;

derivation
Test_and_set

“seg_word;
end;

Figure 18. Hardware Primitives (concluded)
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Read_interpreter_data and Write_interpreter_data, shown in Figure
19, provide access to the interpreter data for the process. These two
primitives, plus the four primitives discussed above for referencing
memory, can be combined to provide for the execution of all hardware
instructions and associated operations such as faults and interrupts.
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/* READ_INTERPRETER_DATA - read all interpreter data */
V_function Read_interpreter_data: interpreter_data_type;
derivation

Read_interpreter_data = Process(Cur_proc).interpreter_data;
end;
/* WRITE_INTERPRETER_DATA - writes all of interpreter data */
0_function Write_interpreter_data (interpreter_data);
effect

Process(Cur_proc).interpreter_data = interpreter_data;
end;

Figure 19. Reading and Writing Interpreter Data

63



SECTION V

PROCESS CONTROL

PROCESS CREATION AND DELETION

Create_proc and Delete proc are shown in Figure 20. Creation of
a process with a specified user_id at an equal or higher access level
is allowed. When a process is created, it is given a list of segment
numbers of segments to be pre-initiated in the new process’s kst,
called an initial_kst. Create_proc must verify that the new kst to be
created is consistent -- that parent directories of all entries speci-
fied are also specified. The new Process data base is filled in as
required, and the kst of the new process is initialized. If the new
process is of a higher access level than the original process, the new
process will not have write access to any segments in its address
space, and will thus not be able to do much until it initiates or cre-
ates a segment at its level. The interpreter_data of the new process,
however, is available for "scratch" storage until writable segments
are initiated. The Create_proc primitive provides almost the simplest
possible mechanism that will create a process with a given address
space and allow it to begin execution. Note that little complexity is
added to the specification by allowing a set of segments to be speci-
fied by the original process, instead of just one segment (at least
one segment is needed).

Delete_proc will delete any process with an access level equal to
or greater than that of the current process. No check of user_id is
made, since deletion of a process with a different user_id is a denial
of service issue.

It is intended that the Create_proc and Delete_proc be used to
implement the system function that creates and destroys processes for
users as they log in and out. The operating system most likely will
not allow arbitrary user processes to create or delete other processes
with different user_ids. A single process, usually referred to as the
root process or answering service, will be responsible for creating
and deleting user processes as users log in and out.

The ability to create another process with a different user_id
may appear to be a violation of discretionary security, since it would
be possible for a process, which does not have access to a particular
segment, to create another process as its agent with the proper
user_id to access the segment. The discretionary access rules, how-
ever, do not require a validated user authentication mechanism to be
within the kernel. They only require that the access control mecha-
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/* CREATE_PROC - Create another process of equal or higher access level */

OV_function Create_proc (user_id, initial kst, access_level): uid_type;

let Cur = Process(Cur_proc);
New = Process( ‘Unique_id);
exception

"Dominates (access_level, Cur.access_level);

“(¥iseg)(if iseg € initial kst then
iseg = root_seg |
Cur.kst(iseg) # "undefined" & Cur.kst(iseg).dir € initial kst;
end);

effect

New.uid = “Unique_id;

New.user_id = user_id;

New.kdt = "undefined";

New.priority = Cur.priority;

New.access_level = access_level;

(¥iseg)(if iseg € initial kst
then New.kst(iseg) = Cur.kst(iseg);
else New.kst(iseg) = "undefined";
end);

derivation
Create_proc = New.uid;
end;

/* DELETE_PROC - Delete another process #/
0_function Delete_proc (uid);

let Cur = Process(Cur_proc);

exception
Process(uid) "undefined" |

Process(uid).acess_level # Cur.access_level;

effect
Process(uid)
end;

"undefined";

Figure 20. Creating and Deleting Processes

65



nism itself be within the kernel. Since it not possible to verify
that ACLs are properly set according to the (human) user’s wishes, it
is of little use to try to verify that user authentication, upan which
the ACLs are based, works properly. Of course, since user authentica-
tion can be administratively controlled, and placed into the supervi-
sor or special processes such as the answering service, there is no
problem implementing a meaningful authentication mechanism (i.e., as-
signment of user_id) outside the kernel that is protected from user
tampering.

In order to allow for an answering service running outside the
kernel to be capable of creating a process of any access level,
Create_proc and Delete_proc allow reference to a process of a higher
access level. Thus, the answering service would run at a system low
access level. When the signal to create a new process is received due
to a "login" signal from some device, (see the discussion of Connect
on page 97), the answering service must create a segment in some known
place (having a specific pathname or a specific segment number) that
contains the device’s pathname, and then call Create_proc, specifying
the proper access level and user_id. If further user authentication
is to take place, by reading more input from the device, this authen-
tication must be done by a process that can initiate the device -- not
the answering service that is at system low. The new process may be a
system initializer process that performs this authentication and fi-
nally creates the user process with the proper user_id. A subsequent
logout or disconnect, which is again signalled to the answering ser-
vice, must be followed by a wakeup to the system initializer process,
telling it to destroy the user process. The initializer process (or
the answering service) can then destroy itself. Note that, because it
is not possible to obtain the unique-id of a process created by an-
other process of a higher access level, the answering service can only
send a wakeup to the initializer process and not the user process.

The previous paragraph only explains one method by which proc-
esses on the SFEP can come into being. It is a sufficient example to
illustrate that the Create_proc and Delete_proc primitives provide the
necessary functionality.

INTERPROCESS COMMUNICATION

Interprocess communication involves the coordination and signal-
ling of events between processes. The kernel provides primitives for
process coordination for two reasons. First, since the kernel is re-
sponsible for process scheduling (even though that scheduling is
transparent), a facility must be provided that allows a process to
schedule itself and to wait for events. Second, interprocess communi-
cation allows processes of various access levels to send messages to a
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single process of a higher access level. Using regular data segments
to send such messages results in performance penalties such as the

possibility of lost messages or messages that can never be deleted.

The Process V-function contains two items used in interprocess
communication: a queue of messages and a semaphore. The semaphore is
simply a count of messages in the queue. The message queue is a vec-
tor indexed by unique-id of a message that contains arbitrary data in-
serted by the sending process. Also, if the message is from an I/0
device (see Device_interrupt in Section VI) the message identifies the
source.

The functions used for interprocess communication and scheduling
are illustrated in 21. The Process data structure and message queue
structure are also illustrated. Set_priority is a feature seen neces-
sary in a communications processor for process scheduling. It is as-
sumed that the kernel somehow uses this value to schedule the current
process appropriately. Unfortunately, the specification of this O-
function yields effects that are only visible to the outside world in
terms of real time. It is not clear what the implication is of an O-
function whose effects are not visible at the top level.

Block is the O-function that allows a process to go into a
blocked or "wait" state until a certain event occurs. This event is
defined to be the appearance of a message in the queue. When a mes-
sage is in the queue, the semaphore is decremented and the message is
returned as a value. If there are no messages in the queue when Block
is called (i.e., the semaphore is initially zero), the process waits.
The first two lines of the effect, stating that the semaphore must be
positive and must be decremented by one, cannot both be satisfied un-
less the semaphore is first incremented by some other process. The
specification of Block is somewhat non-standard in the sense that a
wait is implied, though no wait is actually visible to the current
process.

Note that the message removed by Block is the one whose unique-id
has the smallest value. Since the definition of Unique_id, discussed
on page 45, states that the value is always increasing, the message
with the lowest value is also the oldest.

Wakeup, together with the O-function macro Send_wakeup, inserts a
message into the queue of another process and increments the sema-
phore. The only exception signalled by Wakeup is when the process’s
access level is less than that of the current process. Wakeup must
not allow the caller to distinguish between a nonexistent process and
a process of a higher access level. If the process to which the mes-
sage is sent does not exist, the message is simply not sent and the
caller is not notified. In order to actually implement sending of a
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process_type = structure /* process data base ¥/
(kst: kst_type,
user_id: user_id_type,
uid: uid_type,
kdt: kdt_type,
priority: priority_type,
semaphore: integer,
messages: vector(uid_type) of message_type,
interpreter_data: interpreter_data_type,
access_level: access_level_type);

message_type = vector (message_length _type) of boolean;

message_length _type = integer (0 to max_message_length);

priority_type = integer;

/®* SET_PRIORITY - Set the execution priority of the process #/
0_function Set_priority (priority);

let Cur = Process(Cur_proc);

effect

Qur.priority = priority;
end;

Figure 21. Interprocess Communication Primitives
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/% BLOCK %/

OV_function Block: message_type;

let Cur = Process(Cur_proc);
uid = min {iuid | ‘Cur.messages(iuid) # "undefined"};
effect

Cur.semaphore > 0
Cur.semaphore = °

H
Cur .semaphore - 1;
Cur .messages(uid) =

"undefined";

derivation
Block = “Cur.messages(uid);
end;

/% WAKEUP */
O_function Wakeup (proc, message);
let Cur = Process(Cur_proc);
exception

Process(proc) # "undefined" &

“Dominates (Process(proc).access_level, Cur.access_level);

effect

if Process(proc) # "undefined"

then Process(proc).semaphore = Process(proc).semaphore + 1;

Process(proc).messages( “Unique_id) = message;

end;
end;

/* SFND_WAKEUP - sends a message to a process */
O_function_macro Send_wakeup (proc, message);
effect

Process(proc).semaphore = Process(proc).semaphore + 1;

Process(proc) .messages(Unique_id) = message;
end;

Figure 21. Interprocess Communication Primitives (continued)
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/* INTERROGATE - examine next message without going blocked */

OV_function Interrogate: message_type;

let wuid = min {iuid | "Cur.messages(iuid) # "undefined"};
Cur = Process(Cur_proc);
exception

(¥ iuid) (Cur.messages(iuid) = "undefined");

effect
Cur.semaphore = Cur.semaphore - 1;
Cur.messages(uid) = "undefined";
derivation

Interrogate = “Cur.messages(uid);
end;

Figure 21. Interprocess Communication Primitives (concluded)
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message to a process of a higher access level, it is necessary that
the unique-id of the receiving process be somehow communicated to the
process at the lower access level. This can only happen if the re-
ceiving process was created by a process of an equal or lower access
level than the sending process, or if such information is provided ex-
ternally.

The last function, Interrogate, allows a message to be removed
from the queue without the process’s going blocked if the queue is
empty.
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SECTION VI

INPUT/OUTPUT

DEVICES IN HIERARCHY

I/0 devices are objects in the hierarchy that have several attri-
butes in addition to those for segments and directories. The struc-
ture of a directory branch, repeated in Figure 22, contains an item
called device_data. When a device is created using a trusted func-
tion, the device is given a minimum and maximum access level, both of
which must be greater than or equal to the access level of the parent
directory. The "current" access level of the device, valid when the
device is "connected", is the actual access level of the object as
used by kernel primitives accessed by non-kernel software. The mini-
mum and maximum levels are administratively determined and are physi-
cal parameters that have to do with the physical environment in which
the device is located. When a user, using a trusted function, con-
nects a device, he specifies an access level that must be between the
minimum and maximum for the device, and that access level becomes the
current access level of the object.

HARDWARE SUPPORT OF I/O

The structure of the I/0 subsystem supported by the kernel is
heavily based on the SFEP hardware support of I/0. The virtual memory
and address translation mechanism have already been discussed as they
relate to storage control. I/0 devices are also supported in the vir-
tual memory. Figure 23 illustrates the address translation performed
by the SFEP to convert a virtual device number into a physical device
reference. Note the similarity between this figure and Figure 3 for
memory accesses. The DBR, in the top of the figure, is used to point
to the base of the set of descriptors for I/0 devices, and the virtual
device number is an index into this table. The I/0 descriptor con-
tains the physical device number that hardware uses to access the de-
vice.

The reason that there is only one level of descriptor for device
references is that there is no need to split the descriptor segment
into pages (since the number of I/0 descriptors is usually small) and
there is no reason to break up the virtual device address. In addi-
tion, since the kernel does not allow devices to be shared, there is
no need to allow for sharing of device descriptors.
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branch_type = structure /* branch in a directory %*/
(uid: uid_type,
type: type_type,
access_level: access_level_type,
acl: acl_type,
device_data: device_data_type);

device_data_type = structure /%* branch info for devices ¥/
(physical device: physical_device_type,
min_access_level: access_level_type,
max_access_level: access_level_type,
connected: boolean);

physical device_type = integer; /* physical device address ¥/

Figure 22. Device Attributes
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Figure 23 only illustrates the controls involved when a process
accesses a device directly. Also to be considered is a device's ac-
cess to memory, in the case where the device is a direct memory access
(DMA) device. The SFEP hardware supports DMA devices securely by sim-
ply mapping all memory references made by such devices in exactly the
Same manner as processor memory references are mapped. The situation
is somewhat complicated by the fact that a DMA device may request ac-
cess to memory when the process originating the I/0 request is not
currently running, but hardware takes care of this problem by keeping
a correspondence between DBR values and physical devices having I/0
currently in progress.

There is also an alternative implementation of DMA memory refer-
ences that the SFEP supports. Note that, since a memory reference may
involve several levels of descriptor references, hence many accesses
to memory, it may not be possible to support high speed DMA devices
with such a structure. Even at relatively low speeds, performance is
certainly degraded somewhat when every access to memory requires up to
three additional fetches. The performance problem is alleviated to a
certain degree by using associative memories for descriptors, but in
order to provide for full performance capability the SFEP hardware
also allows a "premapped" mode of I/O0.

In premapped mode the necessary access checks to memory are made
at time of initiation of the I/0 operation ("initiation" of an I/0 op-
eration must not be confused with initiation of the device in the kdt
to be discussed below). All subsequent memory references made by a
premapped device are made to absolute addresses. The disadvantages of
premapped I/0 are in certifiability. In order to certify that pre-
mapped I/0 is secure, it is necessary to first determine unambiguously
all pages of memory that might be accessed in a given I/0 operation,
verify that access, make sure the pages will be "in core" throughout
the duration of the I/0, and finally "trust" the I/0 controller not to
reference any memory outside of its assigned area. It is not believed
that it is possible to certify this type of I/0, and thus premapped
I/0 will be ignored in the top level kernel specification. Of course,
at lower levels within the kernel, where the invoking software is cor-
rect and trusted, it may be very useful to provide premapped I/0 for
support of virtual memory on disks or tapes.

INITIATION AND TERMINATION

The Initiate_device O-function, along with the kdt structure, is
shown in Figure 24. The caller of Initiate device provides the direc-
tory number and entry number of the device and the virtual device num-
ber he wants to use. The rules for device initiation are exactly the
same as those for segment and directory initiation, except that the
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device_type = integer (0 to max_device_no); /* virtual device address %/

kdt_type = vector (device type) of structure /* known device table */
(dir: seg_type,
entry: entry type,
uid: uid_type,
device_reg: word_type,
physical_device: physical_device_type);

/* INITIATE DEVICE - initiates a device %/
O_function Initiate_device (dir, entry, device);
let Cur = Process(Cur_proc);

exception

Cur.kdt (dir) = "undefined";

Cur.kdt (device) # "undefined";

Cur.kdt(dir).type # "directory";

Branch = "undefined";

Cur.access_level # Branch.access_level;

Branch.type # "device";

Branch.device_data.connected = "false";

(3 iuid, idevice)
(Process(iuid).kdt(idevice).device_data.physical device =
Branch.device_data.physical device);

effect
Cur .kdt (device).dir = dir;
Cur.kdt (device).entry = entry;
Cur.kdt (device).uid = Branch.uid;
Cur .kdt (device).device_data.physical_device =

Branch.device_data.physical_device;
end;

Figure 24. Device Initiation
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access level of the device must equal that of the process (because de-
vices are always initiated for read-write), and there is an additional
check (the last exception in the figure) that no other process has
currently initiated the device. The kernel cannot allow more than one
process to simultaneously start I/0 on the same device, because when
the device later makes a reference to memory, it is impossible to de-
termine on behalf of which process the reference is being made. Since
the starting of I/0 on a device is performed by software without ker-
nel intervention, the kernel has no way of remembering which process
last accessed the device. Only by limiting the initiation of a device
to one process can the device’s access be subsequently monitored.8

The known device table (kdt) data structure requires some expla-
nation. The components of the kdt are listed below, along with their
meanings.

qirs segment number of the parent directory for this device.
entry: entry number of the device in its parent directory.
uid: unique-id of the device. Note that if physical device num-

bers are unique, it would be possible to use the physical
device number instead of the uid. The uid is used, however,
to maintain consistency in the file system that associates
each object with a uid. Moreover, when a device object is
deleted (by a trusted function), it is necessary that the
unique-id not be reused when the same physical device is re-
created.

device_reg: This is an abstract device register which is loaded or
stored by user software. The values loaded into this regis-
ter can be thought of as corresponding to the various opera-

8Since it is hardware itself that monitors the starting of an 1/0 op-
eration and the subsequent memory references made by the device, it
may be argued that hardware could safely keep track of which process
last referenced the device. Such monitoring, however, is difficult to
implement because it involves too many interactions with device con-
trollers (e.g., determining whether the previous operation has fin-
ished, whether the device is ready to accept a new operation, to whom
to return status information, ete.). 1In reality, the device control-
ler itself will probably refuse to accept an I/0 operation until the
previous operation has completed, but controllers cannot be relied
upon to provide this form of protection. Unfortunately, to save on
hardware costs there are generally such things as multiple device con-
trollers that control more than one device. See the discussion of
asynchronous devices near the middle of page 85.
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tions that the device may perform, and values read from this
register can be considered to be status information. This
register can also be used to read and write data to the de-
vice if the device supports synchronous I/0.

physical device: is the physical device number.

Terminate_device, illustrated in Figure 25, needs to make none of
the checks required by Terminate, except to signal an exception if the
device is already terminated or does not exist.

WIRE AND UNWIRE

When a DMA device makes references to memory, it cannot afford to
get a page fault, because most DMA devices cannot recover from faults
as software can. Since page swapping is not visible to non-kernel
software, and hence not controllable by users, the only way to guaran-
tee that a page will be "in core" or "wired" when a device attempts to
access that page is to provide a primitive that instructs the kernel
to keep the page wired. It is the responsibility of the supervisor or
user to guarantee that all pages accessed by I/0 devices are wired.

In order for the kernel to completely hide page swapping, it 1is neces-
sary that a trap or fault be signalled whenever a device, acting on
behalf of a given process, attempts to reference a page not wired by
that process.

Unfortunately, it is possible for an unwired page to be in core
at the right time, thereby resulting in a successful access by a de-
vice, and the SPM hardware does not provide a facility for forcing de-
vice faults on unwired pages without also forcing faults on software’s
access to those pages. Such a situation involving paging activity can
be used to transmit information: a top secret process, by the rate at
which it accesses an unclassified page, can control whether that page
is in core or not. If the "page in core" condition were visible to
some other unclassified process, an information channel would exist.
The "page in core" condition is normally not visible, because the ker-
nel hides paging for memory references. For I/0 accesses to memory,
though, the success or failure of an I/0 operation reveals clearly
whether a page is in core. 1If the I/0 operation is initiated by the
unclassified process, the "page in core" condition is therefore visi-
ble. The ability of the top secret process to directly control paging
can be eliminated by not allowing the explicit wiring of a page of a
lower access level. The implicit control of paging, however, (i.e.,
that caused by memory references by a process) cannot be prevented.

This information channel presented by paging activity may be too
"noisy" or of too low a bandwidth to be used successfully. In order
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/* TERMINATE_DEVICE - terminates a device #/
0_function Terminate_device (device);
let Cur = Process(Cur_proc);

exception
Cur .kdt (device) = "undefined";

effect
Cur .kdt (device)
end;

"undefined";

Figure 25. Terminating a Device
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to keep the specification itself secure, the primitives that are used
by a device to read and write memory are specified as if an exception
is always signalled if the page has not been wired by the associated
process. (See the Device_read_memory V-function in Figure 28.) Be-
cause pages can only be wired if they are at a level equal to that of
the process, it therefore also becomes impossible to perform I/0 on a
page of a different access level.

Wire and Unwire are shown in Figure 26. Note that Wire only al-
lows wiring of a page of a segment with an access level equal to that
of the current process. Unwire needs no such check, since a page of a
different access level could not have been wired in the first place.

ACCESS TO AND BY DEVICES

I/0 devices generally come in two forms, asynchronous and syn-
chronous. Synchronous I/0 usually involves a transfer of data between
a device and a hardware register, and thus can be considered to be
similar to control operations or operations that initiate I/0 by a de-
vice. Asynchronous I/0, in which the device itself references memory
without the help of the process, must be treated as if the process
that is using the device is making the references.

Synchronous access to an I/0 device is provided by the V-function
Read_device_register and O-function Write_device register shown in
Figure 27. The exceptions checked by these functions are similar to
those checked by Inas for access to segments. No equivalent Inas for
devices is provided, since only these two functions require the type
of test made by Inas.

Access to memory by a device is provided by the Asynchronous
functions Device_read_memory and Device_write_memory illustrated in
Figure 28. Because these are asynchronous functions, they can be
called at any time in any process. Thus, before making any accesses,
the process for which the I/0 is being performed must be determined.
The first two "lets" in the specification of each function obtain the
uid of the process that last initiated the device. The exceptions
check that there is indeed some process that has currently initiated
the device (to take care of the possibility that a DMA device is ter-
minated or deleted before finishing its operation), that access to the
memory location by the process is allowed in the specified mode, and
that the page in which the word appears is wired by the process. See
the discussion of Wire and Unwire on page 78 for the motivation behind
this latter check.

When a device has completed an I/0 operation, it normally signals
an interrupt to the processor. The kernel must then route this inter-
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/* WIRE - wires a page in real memory */
0 function Wire (seg, page);
let Cur = Process(Cur_proc);:

exception
Cur.kst(seg) = "undefined";
Cur.kst(seg).type # "segment";
Seg branch.access level # Cur.access level;

effect
Cur.kst(seg).wired pages(page) = "true";
end;
/* UNWIRE - unwires a page in memory #*/
0 function Unwire (seg, page);
let Cur = Process(Cur_proc);
exception
Cur.kst(seg) = "undefined";
Cur.kst(seg).type # "segment";
effect

Cur.kst(seg).wired pages(page) = "false";
end;

Figure 26. Wiring Pages
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/% READ DEVICE REGISTER - reads I/0 device register ¥/
V_function Read device register (device): word type;

let Cur = Process(Cur_proc);
acle = min {iacle | Device_ branch.acl(iacle).user_id = Cur.user id};

exception
Cur.kdt (device) = "undefined";
“(3iacle)(Device branch.acl(iacle).user _id = Cur.user_id &
"read" € Device branch.acl(acle).mode);

derivation
Access device register = Cur.kdt(device).device reg;
end;

/* WRITE_DEVICE REGISTER - loads device register, possibly starting I/0 */
0 function Write_device register (device, word);

let Cur = Process(Cur_proc);
acle = min {iacle | Device branch.acl(iacle).user id = Cur.user_id};

exception
Cur.kdt (device) = "undefined";
(3iacle) (Device_branch.acl(iacle).user_id = Cur.user id &
"write" € Device_branch.acl(acle).mode);

effect
Cur.kdt (device).device_reg = word;
end;

Figure 27. Reading and Writing Device Registers
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/* DEVICE_READ _MEMORY -~ device read memory %/

Asynchronous_V_function Device_read_memory
(physical_device, pointer): word_type;

let (proc, device) = (iuid, idevice) »
(Process(iuid).kdt (idevice).device data.physical device =
physical_device); \
Cur = Process(proc);

exception
“(3iuid, idevice)
(Process(iuid).kdt (idevice).device_data.physical device =
physical_device);
“Inas (proec, pointer.seg, "read");
“Cur.kst(pointer.seg).wired pages(pointer.offset.page);

derivation
Device_read memory = Data(Cur.kst(pointer.seg).uid, pointer.offset);
end;

/% DEVICE_WRITE MEMORY - device write into memory ¥/

Asynchronous_0O_function Device_write_memory
(physical_device, pointer, word);

let (proc, device) = (iuid, idevice) »
(Process(iuid).kdt (idevice).device_data.physical device
physical device);
Cur = Process(proc);

exception
"(3iuid, idevice)
(Process(iuid).kdt (idevice).device_data.physical_device
physical device);
“Inas (proc, pointer.seg, "write");
“Cur.kst(pointer.seg).wired_pages(pointer.offset.page);

effect
Data(Cur.kst(pointer.seg).uid, pointer.offset) = word;
end;

Figure 28. Device Access to Memory
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/% DEVICE_INTERRUPT - Interrupt a process by a device */
Asynchronous_0_function Device_interrupt (physical_device, message) ;

effect

(¥ iuid, idevice)
(if Process(iuid).kdt(idevice).device_gata.physical_device:

physical _device
then effects of Send wakeup (iuid, bit(idevice) | |message);
end;);
end;

Figure 29. Device Interrupt
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rupt to the proper process that is currently handling the device. In-
terrupts as such are not supported by the kernel. Instead, interrupts
from devices (or timers) are transformed into wakeups, and the process
in charge of the device must examine its wakeup messages. In Figure
29, the Asynchronous Device_interrupt O-function is shown. This prim-
itive is called by the device when it wishes to signal an interrupt.
The parameters are the physical device number and an arbitrary message
that becomes the data associated with the interrupt. The interrupt
then simply becomes a wakeup to the process currently using the de-
vice. The virtual device number, identifying the source of the inter-
rupt, must also be made available to the process, and, since the de-
vice itself cannot supply the virtual device number as part of the
message, the kernel inserts it.

Note that the secure operation of these asynchronous functions is
dependent upon the correctness of the "physical_device" parameter that
identifies the device requesting the access. In the proof of the
specification it must be stated, as an assertion, that this
physical_device parameter is the identifier of the same device that
was addressed when the I/0 operation was initiated. For many devices,
the kernel can either determine the physical device number by virtue
of the channel number or port to which the device is physically con-
nected, or must trust the device to correctly identify itself. For
multiple device controllers, where one single channel may be used for
several devices, the kernel must further trust the controller to pro-
vide the proper identification of the device.

In the case of single channel devices, there is a certain amount
of risk in trusting a device to identify itself, unless the device
controller is certified to provide the correct information. This cer-
tification is not seen as too difficult of a problem, because the
hardware providing the identification of the device is probably rela-
tively simple. For multiple device controllers, the hardware that
distinguishes between devices is usually much more complex, and may
involve a microprogram. If such controllers cannot be certified, they
must be restricted to single level operation (i.e., all devices on a
given controller must have the same access level). Although the SFEP
kernel treats all devices as independent, the ability to assign mini-
mum and maximum access levels to each device allows for restricted op-
eration of groups of devices on a single controller.9

9Identification of the device is not the only security related problem
associated with multiple line controllers. The fact that such con-
trollers must correctly and securely handle information of various ac-
cess levels simultaneously presents an even greater verification prob-
lem.
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HOST-SFEP COMMUNICATION F

The main function of the SFEP is, of course, to act as a front-
end processor for the host Multics computer. In the top level speci- £
fication, very few additional functions need be provided to support
communication with the host. Figure 30 illustrates the primitives
used in communication with Multics. 1In the specification of these two
functions in the figure, the SFEP must reference host kernel primi-
tives. To avoid ambiguity with SFEP primitives of the same name, the
prefix "Host_" is inserted in front of any reference to a host func-
tion.

Messages are sent between SFEP and the host via the interprocess
wakeup mechanism. Communication between two processes in this manner
is restricted to processes of the same access level. To send a mes-
sage to the host, the SFEP process calls Send in Figure 30, and sup-
plies the unique-id of the host process and the message to be sent.
The Host_Send_wakeup O-function macro, used to send the message, oper-
ates in a manner very similar to the SFEP Send_wakeup illustrated in
Figure 21. ke

The host has a primitive, just like Send, that has as its effects
the SFEP Send_wakeup. Thus, receipt of a message from the host can be ’
accomplished by the SFEP by using the standard interprocess communica-
tion facilities Block and Interrogate.

Because there is a necessity for the SFEP to signal some kind of
interrupt in the host process, for handling the Multics QUIT signal, a
predetermined bit of the interpreter data of the host, called the
"quit_flag", that can be directly set by an SFEP process, is used to
signal an interrupt. The host interpreter presumably examines the
quit_flag at appropriate intervals. The Interrupt O-function is
called by the SFEP process to set the quit_flag in a host process’s
interpreter data.

There is no required capability for a host process to interrupt
an SFEP process. This is because, since the SFEP’s major task is I/0,
and not general purpose programming, the SFEP process can be counted
on to call Block or Interrogate often enough to see even the most ur-
gent messages coming from the host.

NETWORK COMMUNICATION
The Multics SFEP must also be able to communicate to other net-
work processors in its role as a secure communications processor.

Single level networks present no problem for non-kernel software.
Multiple level secure networks, however, must be handled by the kernel
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/* SEND - send a message to host process ¥/
O_function Send (proc, message);
let Cur = Process(Cur_proc);

exception
Host_Process(proc) # "undefined" &
"Dominates (Host_ Process(proc).access_level, Cur.access_level);

effect

effects of Host_Send wakeup (proc, message);
end;
/* INTERRUPT - Send interrupt to host process */
0 function Interrupt (proc);
let Cur = Process(Cur_proc);
exception

Host_ Process(proc) # "undefined" &

“Dominates (Host_Process(proc).access level, Cur.access_level);

effect

Host Interpreter_data(proc) [quit_flag] = "true";
end;

Figure 30. Host-SFEP Communication Primitives
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and therefore primitives must be provided for communication through
such a network. In the SFEP specification, it is assumed that all
multilevel network interfaces are to other SFEPs. An interface to an
arbitrary multilevel network cannot be specified because of the arbi-
trary nature of network protocols. A "generic" type of specification
that may adequately deal with several types of protocols existing in
presently available secure networks is apt to be too abstract to be of
much use, or too complex to verify.

The O-function SFEP_send, shown in Figure 31, is used by an SFEP
process to send a message to a process in another SFEP. The function
is almost identical to Send for sending a message to the host. The
only difference is the checking of a value, treated here as a constant
bit vector, called SFEP_exists, to determine whether there is an SFEP
of the specified name. This vector could also have been specified as
a V-function with a trusted O-function to set it, but such an addi-
tional complication is, in an abstract sense, unnecessary.
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SFEP_exists: vector (integer) of boolean;

/* SFEP SEND - Send message to another SFEP process #*/
0_function SFEP_send (SFEP, proc, message);
let Cur = Process(Cur_proc);
exception

“SFEP exists(SFEP);

SFEP_Process(proc) # "undefined" &

“Dominates (SFEP_Process(proc).access_level, Cur.access_level);

effect

effects of SFEP Send wakeup (SFEP, proc, message);
end;

Figure 31. Network Communication
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SECTION VII

TRUSTED FUNCTIONS

A detailed explanation of trusted functions and their relation-
ship to the top level specification has been discussed in Section II
on page 20. In the SFEP, trusted functions are utilized to provide
certain functions that cannot be implemented at the top level due to
possible ¥*-property violations. This section discusses a preliminary
set of trusted functions in terms of O-functions (and supporting
V-functions) that a trusted user or System Security Officer (SSO)
calls directly from his console. Since the specification is abstract,
these O-function calls are specified just like the top level O-func-
tion calls. It is the understanding, however, that the arguments
passed to these O-functions are read directly from the user’s termi-
nal, without processing by any non-kernel software. Code conversion
and terminal protocols are implicitly included in the specification of
a trusted function, and may not be handled by software outside the
trusted function interface. Of course, in an actual implementation
there will have to be software to read input from the terminal and
process that input before passing it on as a function call. As far as
the verification is concerned, all software and hardware between the
user s console and the kernel are part of the trusted function.

It was stated previously that incorrect invocation of trusted
functions could possibly result in a security compromise in terms of a
*®_property violation. No amount of checking, via exceptions, can pre-
vent this. It would therefore seem unnecessary to provide for any ex-
ception conditions in the specification of these functions, because
exceptions do not help to verify that the function is correctly in-
voked.

It must be remembered, however, that the "proof" of a trusted
function is a proof of correctness, not a proof of security. An ex-
ception in a trusted function is not placed there to make security
checks, but is used because the exception is part of the desired func-
tionality to be implemented. Since trusted functions are invoked by
people, and people (even trusted ones) can make mistakes, part of the
operation of a trusted function may be to help catch inadvertent mis-
takes. For example, certain errors in the invocation of a trusted
function could result in an inconsistency in the hierarchy (such as
the creation of a segment without a parent directory) that might be
difficult to detect if not checked at the time the trusted function is
invoked. Exceptions appearing in a trusted function then are simply
considered to be part of the primitive’s operation.
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V-FUNCTION MACROS

These V-function macros provide values to the kernel that the
trusted user has no particular need to see. Each of the macros shown
in Figure 22 provides derived values useful in the implementation of
other O-functions and V-functions used by trusted functions.

Since trusted functions are invoked by users and not by proc-
esses, there is no concept of a kst or of a current process. There-
fore, in order to allow a trusted user to access an object in the hi-
erarchy, a means must be provided by which an object can be named,
without using segment numbers. One possibility is the use of unique-
id’s, since the V-functions Directory and Data describe all objects in
terms of their unique-id‘s. Unique-id’s, however, are difficult for
users to enter and are prone to human error. In addition, since an
object s attributes are in the parent, a user who knows only the
unique-id of an object has no simple way of finding the attributes.
Therefore, the concept of a "pathname" of an object is recognized. A
pathname, whose structure is defined by pathname_type, shown at the
top of Figure 32 on page 92, is composed of a series of entry numbers
and a length. The last number in the pathname is the entry number of
the object in its parent directory. The number before that is the en-
try number of the parent directory in its parent, and so on. The
first entry number is that of the first directory under the root. A
pathname having zero length identifies the root itself.

Since a pathname by itself is not useful to the primitives in
finding an object, most of the macros are involved in the conversion
of a pathname to a uid and vice versa. Parent_path, the first macro
in Figure 32, returns the pathname of the parent of the object. This
pathname is simply the same as the argument minus its last entry.

Path_to_uid returns the unique-id of the object described by a
pathname. The unique-id of the root is a system constant, root_uid.
Note that the derivation of this macro is recursive, making use of
Parent_path to find the pathname and the unique-id of the parent. Al-
though it has been the policy in the specification to avoid recursion
in O-functions, due to the difficulty seen in verification, there
seems to be no problem with recursive V-function macros. Uid_to_path
is the inverse macro that returns the pathname for a given unique-id.

Path_exists, similarly recursive, returns "true" if the specified
object exists. This macro is used in exceptions to verify a given
pathname. Finally, Parent_uid returns the unique-id of the parent di-
rectory of an object.

9il.



pathname_type = structure /* pathname of an object ¥/
(length: pathname_length_type,
entries: vector (pathname length type) of entry type);

pathname length type = integer (0 to max_pathname length);

/% PARENT PATH - Returns pathname of parent ¥/
V_function macro Parent path (pathname): pathname_type;

derivation
if pathname.length = 0
then Parent_path = pathname;
else (¥i)(if 1<i<pathname.length-1
then Parent_path.entries(i) = pathname.entries(i);
end);
Parent path.length = pathname.length - 1;
end;
end;

/* PATH TO UID - Returns unique-id of pathname */
V_function macro Path to uid (pathname): uid_type;
derivation

if pathname.length = 0

then Path to_uid = root uid;
else Path _to_uid = Directory (Path to_uid (Parent_path(pathname)),

pathname.entries(pathname.length)).uid;

end;
end;

Figure 32. Trusted Subjects V-Functions
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/* UID TO PATH - Returns pathname for a uid */
V_function macro Uid_to_path (uid): pathname type;
let parent pathname = Uid_to_path (Parent_uid (uid));

derivation
if uid = root_uid
then Uid_to_path.length = 0;
else
(¥i) (if 1<i<parent_pathname.length
then Uid_to path.entries(i) = parent_pathname.entries(i);
end);
Uid_po_path.entries(parent_pathname.length+1) = ientry »
Directory (Parent_uid(uid), ientry).uid = uid;
Uid_to_path.length = parent pathname.length + 1;
end;
end;

/* PATH EXISTS - Returns "true" if branch for object exists */

V_function_macro Path _exists (pathname): boolean;

derivation
if pathname.length = 0
then Path _exists = "true";

else Path exists = Path exists (Parent_path (pathname)) &
Directory(Path_to_uid(Parent_path(pathname)),
pathname.entries(pathname.length)) £ "undefined";
end;
end;

/% PARENT UID - Returns uid of parent, given a uid *®/
V_function_macro Parent_uid (uid): uid_type;
derivation

Parent_uid = iuid »

(}ientry) (Directory(iuid,ientry).uid = uid);
end;

Figure 32. Trusted Subjects V-Functions (concluded)
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DEVICE MANIPULATION

Devices are the one object type that cannot be created by user
software. The reason is that in order to create a device in the hier-
archy the physical device number must be supplied and minimum and max-
imum access levels must be specified, information about which non-ker-
nel software has no access or knowledge. Also, since an exception
must be signalled if that same physical device already exists some-
where in the hierarchy, even if it is at a higher access level, a pos-
sible information channel would exist.

The Create_device O-function is shown in Figure 33. Input param-
eters are the pathname of the directory in which the device is to be
created, the entry number of the device, and the device_data structure
containing the physical device number and the minimum and maximum ac-
cess levels. The first exception checks that the device does not al-
ready exist in the hierarchy and the second checks that the pathname
is valid. The additional exceptions check that the consistency rela-
tion

parent access level < minimum access level < maximum access level

where "<" means "dominates", holds true. Fihally, the "connected"
component of device_data is checked to insure that it is initially
off.

Note that if Create_device were available to untrusted software
at the top level kernel interface, a clear security violation would
exist in the first exception, unless the caller was a system _high pro-
cess. If the caller is system high, then a *-property violation would
exist when the device is created. There is no way to provide for se-
cure creation of devices by non-kernel software unless devices are re-
moved from the hierarchy or placed in a restricted place.

The same reasoning behind the motivation for providing V-func-
tions such as Get_acl and Get_attributes leads to the need for a V-
function that returns the pathname of a device in the hierarchy. The
V-function Device_path, in Figure 34, returns a physical device’s
pathname if it exists.

Note that other operations on devices, such as deletion and set-

ting of the ACL, can be performed by untrusted software using primi-
tives already defined at the top level.
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/% CREATE_DEVICE - Creates a branch for a physical device ¥/

0_function Create_device (pathname, entry, device data);

let parent_uid

exception
(3iuid,ientry) (Directory(iuid,ientry).type = "device" &
Directory(iuid,ientry).device data.physical device =

= Path_to_uid (pathname);

device_data.physical device);

“Path_exists (pathname);

Directory

(parent_uid, entry) £ "undefined";

“Dominates (device data.min access level,
Directory (Path_to_uid (Parent_path (pathname)),

pathname.entries(pathname.len

gth)).access_level);

“Dominates (device data.max_access level, device data.min_access level);

device_data.connected = "true";
effect
Directory (parent_uid, entry).uid = “Unique id;

end;

Directory
Directory
Directory
Directory

(parent_uid, entry).type = "device
(parent_uid, entry).access level =
(parent_uid, entry).acl.size = 0;
(parent_uid, entry).device_data =

Figure 33. Creating a Device
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/* DEVICE_PATH - Returns pathname of a physical device %/
V_Function Device_path (device_data.physical device): pathname_type;

let device_exists = Directory(iuid,ientry).type = "device" &
Directory(iuid,ientry).device_data.physical device =
device _data.physical device;

exception
“(3iuid,ientry)(device_exists);

derivation
(¥iuid, ientry)
(if device exists
then Device_path = Uid_to_path (Directory(iuid,ientry).uid);
end);
end;

Figure 34. Obtaining the Pathname of a Device

96



LOGGING IN AND OUT

The SFEP kernel must support a trusted interface that logs in a
terminal at a given access level. This access level is selected by
the user when the terminal is first "connected" to the system, in some
manner such as by typing in a value or pressing a special key. Once
the terminal is assigned an access level by the kernel, non-kernel
software can initiate the device as it pleases.

Figure 35 shows the Connect and Disconnect functions that are in-
voked by the user, in a trusted mode, to log a terminal in or out.
The first parameter to Connect, the physical device number, is not
supplied by the user but is available by virtue of the physical con-
nection. The access level is entered by the user and, if the device
exists in the hierarchy and the selected access level is between the
minimum and maximum allowed for the device, the device is defined to
be "connected". Once connected, any process of the level of the de-
vice may initiate it. 1In order to provide for the signalling of a
connection to software, the kernel sends a wakeup to a particular pro-
cess defined by non_kernel software to be the "answering service".
The hidden primitive V-function Answering_service_uid is set by soft-
ware using Set_answering service_uid to the uid of the answering ser-
vice process, for use in the Connect operation. The wakeup message
itself consists of the pathname of the device that has been connected.

Disconnect occurs via some signal from the terminal, and thus the
physical device number is the only parameter required. The kernel
terminates the kdt entry for the device in the process that initiated
it, and resets the connected flag.

The physical realization of the connect and disconnect procedure
must reasonably reflect the operation of these two functions. In the
simplest case, the power on and power off interrupts, received by the
kernel, can be intercepted and interpreted as connect and disconnect
functions.
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/* ANSWERING_SERVICE UID - uid of answering service used for logging in #*/

Hidden V_function Answering service uid: uid_type;

/% SET_ANSWERING_SERVICE_UID - set unique-id of answering service #*/
O0_function Set_answering service uid (uid);

effect
Answering service_uid = uid;
end;

/* CONNECT - login a device %/
O_function Connect (physical device, access level);

let device_exists = Directory(iuid,ientry).type = "device" &
Directory(iuid,ientry).device_data.physical device = physical device;
(dir_uid, entry) = (iuid, ientry) » (device_exists);

exception
“(3 iuid, ientry)(device_exists);
"Dominates (access_level, Branch.min_access level) !
"Dominates (Branch.max_access_level, access level);

Branch.connected = "true";
effect
Branch.connected = "true";

Branch.access_level = access_level;
effects_of Send_wakeup (Answering service uid,
bit (Device_path (physical device)));
end;

Figure 35. Logging In and Out
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/% DISCONNECT - logout physical device */
0_function Disconnect (physical device);

let device_exists = Directory (iuid, ientry).type = "device" &
Directory(iuid,ientry).device _data.physical device = physical device);
(dir uid, entry) = (iuid, ientry) » (device_exists);

exception
“(3iuid,ientry) (device exists);

effect
(¥ iuid, idevice)
(if “Process(iuid).kdt(idevice).physical device = physical device
then Process(iuid).kdt(idevice) = "undefined";
end);
Branch.connected = "false";
end;

Figure 35. Logging In and Out (concluded)
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SECTION VIII

CONCLUSION

The security kernel specified in this report provides a general
purpose interface that allows for the use of the kernel not only in an
SFEP, but in general applications including that of a secure communi-
cations processor. The design of the kernel draws heavily from expe-
rience with the Multies kernel, being very similar in the file system
and virtual memory organization. The SFEP kernel is intended to run
on a specific minicomputer currently being designed by Honeywell to
provide a hardware base for a secure front-end processor and communi-
cations processor. When verified and certified, the SFEP and Multics
kernels will provide for the implementation of a large scale secure
multi-level operating system.
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APPENDIX I

SPECIFICATION SYNTAX

The syntax is expressed in extended BNF. The characters "+" and
"#" ape interpreted to mean "zero or more" and "one or more" of the
preceeding element, respectively. Punctuation consisting of semico-
lons and commas has been omitted from the syntax specification, but
may be freely used in the specification for clarity. Braces {} are
used to surround required sections consisting of multiple symbols, and
brackets [] surround optional sections. Comments in the specification
surrounded by /* and */ are ignored. Underlining is used to indicate
terminal symbols that might otherwise be confused with symbols of the
meta-language. The terminal character strings of the language are
<number> (any string of numeric characters) and <symbol> (any string
of characters, not all numeric).

<module>::=
module <module_name>;
<type>*
<define>*
<parameter>¥*
<constants>*¥
<V_function>¥
<Hidden_V_function>¥
<OV_function>*
<0_function>#®
<Asynchronous_0_function>®*
<Asynchronous_V_function>*
<0_function_macro>*
<V_function_macro>¥*

<module_name>::=
<symbol>

{type>::=
type {<type_name>+ = <type_designator>;}+

{type_named>::=
<{symbol>

<type_designator>::=

<simple_type>
| <constructed_type>
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<simple typed>::=
<{scalar_type>
| <subrange_type>
| <type_name>

{scalar_type>::=
scalar(<constant>+)

<constant>::=
"<{symbol>"
| <number)

{subrange_type>::=
<simple_type>(<constant> to <constant>)

<constructed_type>::=
{vector_type>
| <structure_type>
| <set_type>

{vector_type>::=
vector <subrange_type> of <simple_type>

{structure typed>::=
structure({<field_name>+ : <simple_typed>}+)

<field_name>::=
<{symbol>

{set_type>::=
set(<simple_type>)

<defined>::=
define {<identifier)> = <expressiond>;}+

<identifier>::=
<{symbol>

{parameter>::=
parameter {<fp_name>+ : <type_designator>;}l+

<fp_name>::=
<{symbol>

{constants>::=
constant {<identifier>+ : <type_designator>[
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<expression>::=
{constant>
<identifier>
<function_call>
“<function_call>
<any reasonable mathematical operation on expressions>

<function_call>::=
<fn_name>[ (<expression>+)]

<fn_name>::=
<{symbol>

<V.functiondi =
V_function <fn_name>[(<fp_name>+)] : <type_designator>
[let <let>+]
[exception <exception>+]
[derivation <value>]
end

<let>ii=
<identifier> = <expression>;

<exception>::=
{expression>;

<valued::=
<expression>;

<Hidden_V_function>::=
Hidden_V_function <fn_name>[(<fp_name>+)] : <type_designator>
[[let <let>+]
[derivation <value>]
end]

<0V_function>::=
OV_function <fn_name>[(<fp_name>+)] : <type_designator>
[let <let>+]
[exception <exception>+]
[effect <effect>+]
[derivation <value>]
end

Keffectd>::=
<expression>;

<0_functiond>::=
0_function <fn_name>[(<fp_name>+)]
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[let <let>+]

[exception <exception)>+]
[effect <effect>+]

end

<Asynchronous_V_function>::=

Asynchronous V_function <fn_name>[(<fp_name>+)] : <type_designator>

[let <let>+]

[exception <exception)>+]
[derivation <value>]

end

<Asynchronous_0_ function>::=

Asynchronous_0_function <fn_name>[(<fp_name>+)]

[let <let>+]

[exception <exception>+]
[effect <effectd>+]

end

<0_function_macro>::=
0_function_macro <fn_name>[(<fp_name>+)]
[let <let>+]
[effect <effect>+]
end

<V_function_macro>::=
V_function_macro <fn_name>[(<fp_name>+)]
[let <let>+]
derivation <value>
end
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APPENDIX II

INDEX TO FUNCTIONS

Below is a list of all function and type names used in the speci-
fication, and the figure and page on which they are illustrated.

Name Figure Page
access_level_type 4 37
Access_permission 1.3 51
acl_mode_type 9 44
acl_type 9 44
Ancestor 10 46
Answering_ service_uid 35 98
Block 21 68
branch_type 22 73
category_type 4 37
classification_type 4 37
Connect 35 98
constants A 41
Create 15 D
Create_device 33 95
Create_proc 20 65
Cur_proc 10 46
Data 10 46
defines 6 39
Delete ] 16 56
Delete_object 16 56
Delete_proc 20 65
device_data type 22 73
Device_interrupt 29 84
Device_path 34 96
Device_read_memory 28 83
device_type 24 76
Device_write_memory 28 83
Directory 9 44
Disconnect 35 98
Dominates 13 2l
entry_type 4 37
Execute 18 60
Get_acl 14 53
Get_attributes 17 59
Get_entries 17 59
Inas 13 51
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Name

Initiate
Initiate_device
interpreter_data_type
Interrogate
Interrupt

kdt_type

kst_type

level_type
message_length_type
message_type
mode_type
offset_type
page_type

parameters
Parent_path
Parent_uid
Path_exists
Path_to_uid
pathname_length_type
pathname_type
physical_device_type
pointer_type
priority_type
Process

process_type

Read
Read_device_register
Read_interpreter_data
seg_type

Send

Send_wakeup

Set_acl

Set_answering service_uid

Set_priority
SFEP_send
Terminate
Terminate_device
type_type
Uid_to_path
uid_type
Unique_id

Unwire
user_id_type
Wakeup

Wire
word_offset_type
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1
24
8
21
30
24
8
u
21
21
9
M
4
5
32
32
32
32
32
32
22
m
21
8
21
18
27
19
u
30
21
14
35
atl
31
12
e5
u
32
n
10
26
i
21
26
mn

Page

48
76
42
68
87
76
42
37
68
68
44
31
37
38
92
92
92
92
92
92
73
3.
68
42
68
60
82
63
37
87
68
53
98
68
89
49
79
37
92
3%,
46
81
37
68
81
37



Name

word_type

Write
Write_device_register
Write_interpreter_data
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n
18
27
19

Page

37
60
82
63
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